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Abstract. In this paper, we present simultaneous obser-
vations of temporal and spatial variability of total electron
content (TEC) and GPS amplitude scintillations on L1 fre-
quency (1.575 GHz) during the time of equatorial spread F
(ESF) while the MST radar (53 MHz) located at Gadanki
(13.5◦ N, 79.2◦ E, Dip latitude 6.3◦ N), a low latitude sta-
tion, made simultaneous observations. In particular, the lat-
itudinal and longitudinal extent of TEC and L-band scintil-
lations was studied in the Indian region for different types
of ESF structures observed using the MST radar during the
low solar activity period of 2004 and 2005. Simultaneous
radar and GPS observations during severe ESF events in the
pre-midnight hour reveal that significant GPS L band scintil-
lations, depletions in TEC, and the double derivative of the
TEC index (DROTI), which is a measure of fluctuations in
TEC, obtained at low latitudes coincide with the appearance
of radar echoes at Gadanki. As expected, when the irregu-
larities reach higher altitudes as seen in the radar map during
pre-midnight periods, strong scintillations on an L-band sig-
nal are observed at higher latitudes. Conversely, when radar
echoes are confined to only lower altitudes, weak scintilla-
tions are found and their latitudinal extent is small. Dur-
ing magnetically quiet periods, we have recorded plume type
radar echoes during a post-midnight period that is devoid
of L-band scintillations. Using spectral slopes and cross-
correlation index of the VHF scintillation observations, we
suggest that these irregularities could be “dead” or “fossil”
bubbles which are just drifting in from west. This scenario
is consistent with the observations where suppression of pre-
reversal enhancement (PRE) in the eastward electric field is
indicated by ionosonde observations of the height of equa-
torial F layer and also occurrence of low spectral width in
the radar observations relative to pre-midnight period. How-
ever, absence of L-band scintillations during post-midnight
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event, when radar observed plume like structures and scintil-
lations were recorded on VHF band, raises questions about
the process of evolution of the irregularities. A possible ex-
planation is that whereas small scale (∼3 m) irregularities are
generated through secondary waves that grow on the walls
of km scale size irregularities, in this case evolution of the
Rayleigh-Taylor instability itself did not extend to irregulari-
ties of scale sizes of a few hundred meters that produce scin-
tillation on a L-band signal.

Keywords. Ionosphere (Equatorial ionosphere; Ionospheric
irregularities)

1 Introduction

The Equatorial Spread F (ESF) irregularities in the nighttime
F region ionosphere have been extensively studied for the
past several decades under varied space weather conditions
(e.g. Fejer and Kelley, 1980; Ossakow, 1981; Kelley, 1989).
The name “Equatorial Spread F” has come from ionogram
observations of a spread in the range or frequency on some
nights over equator (Booker and Wells, 1938). The ESF
irregularities have a “spectrum” that contains various scale
sizes ranging from a few centimeters to hundreds of kilo-
meters and hence radio waves of different frequency bands
are used to study different parts of the irregularity spectrum
(e.g. Kelley, 1989). These plasma irregularities have been
studied using ground-based coherent radars, optical airglow
and ionospheric scintillation observations as well as in situ
rocket and satellite observations over equatorial and low lat-
itude locations (e.g. Mendillo and Baumgardner, 1982; Pa-
tra et al., 1997; Hysell and Burcham, 1998; Kil and Heelis,
1998; Kudeki and Bhattacharyya, 1999; Sinha et al., 1999;
Bhattacharyya et al., 2001; Burke et al., 2004). Scintillations
observed on UHF/VHF signals transmitted from a geosta-
tionary satellite and recorded using single ground receiver
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system as well as spaced ground receiver systems are used
to monitor the plasma irregularities (e.g. Su. Basu and Kel-
ley, 1977; Yeh and Liu, 1982). In recent times, GPS signals
have been used to derive Total Electron Content (TEC) and
amplitude scintillations on L-band signal, which have been
extensively used to study the ESF irregularities (e.g. Bhat-
tacharyya et al., 2000; Valladares et al., 2004; Ramarao et
al., 2006a, b). The importance of all these studies lies in the
fact that these irregularities affect radio wave communication
adversely and hence there is need to understand their gener-
ation and evolution and model them accurately.

The source mechanism for generation of the F region
plasma irregularities have been broadly understood in terms
of growth of the generalized Raleigh-Taylor (R-T) instabil-
ity on the bottomside of the post-sunset equatorial F region,
where a heavy fluid is supported by a lighter fluid, which is a
highly unstable equilibrium condition (e.g. Haerandel, 1974;
Kelley, 1989; Sultan, 1996). According to this mechanism,
if any small perturbation occurs on the bottomside of the
post-sunset equatorial F region, this perturbation is ampli-
fied through a feedback mechanism and as a depleted plasma
bubble penetrates into the topside ionosphere, small scale ir-
regularities are generated. Since these plasma irregularities
are highly field aligned, they are mapped also to higher lat-
itudes as irregularities evolve non-linearly into the topside
ionosphere (e.g. Whalen, 2002). Radar observations have
shown good correlation between the height of F layer and
E×B drift and the height of the equatorial F layer has been
found to be higher on the nights of spread F (Farley et al.,
1970; Fejer et al., 1999). The key factors that control the
generation and distribution of ESF irregularities under mag-
netically quiet periods have been identified to be the height of
the post-sunset F region and hence the pre-reversal enhance-
ment (PRE) of the vertical drift of the equatorial F region
plasma, longitudinal conductivity gradients, transequatorial
winds, integrated flux tube conductivities and seed pertur-
bation (e.g. Abdu, 2001). However, under magnetically ac-
tive periods, it is necessary to first identify nascent equatorial
plasma bubbles (EPBs) in order to associate their appearance
with the reversal of the zonal electric field from westward
to eastward (Bhattacharyya et al., 1989, 2002; Kakad et al.,
2007). Studies indicate that a good correlation exists between
the PRE and the location of the Appleton or equatorial ion-
ization anomaly (EIA) with respect to the magnetic equator
(Whalen, 2001; Valladares et al., 2001). Observations pre-
sented using ionosondes also suggest that density enhance-
ment associated with EIA is seen at higher latitudes during
the time of ESF (Raghavarao et al., 1988). Studies reveal that
asymmetry (symmetry) in the equatorial ionization anomaly
also suppresses (enhances) the growth of the plasma bubbles
due to the role of meridional wind circulation (e.g. Devasia
et al., 2002; Lee et al., 2005; Thampi et al., 2006). Recent
satellite observations reveal that even atmospheric tides may
control the growth of ESF irregularities (e.g. Immel et al.,
2006).

It may be noted that while significant progress has been
made in understanding the generation of these irregularities,
uncertainties still exists in understanding the evolution of the
irregularities at various spectral scales and their day-to-day
and longitudinal variabilities (e.g. Abdu, 2001). While radar
observations have been used to study the temporal evolution
of small scale irregularities, it has to be noted that radar sig-
nal alone can not always specify whether the small scale ir-
regularities are generated in situ or further to the west from
a particular station. Similarly, while the GPS observations
of TEC and L-band scintillations provide the distribution of
irregularities for various zenith and azimuthal directions, it’s
drawback is that it does not provide temporal variation of
the irregularities at a particular location. Hence, no single
instrument can provide the above mentioned information at
a time. Several campaigns using multi-instrument observa-
tions in a coordinated manner have also been used in the past
to derive information for characterizing the ESF irregulari-
ties (e.g. Kelley et al., 1986; Valladares et al., 1996; Basu et
al., 1996; de Paula et al., 2004).

In this paper, we present for the first time simultaneous ob-
servations of ESF over the Indian region using both radar and
GPS receivers, which are sensitive to irregularities with dif-
ferent scale sizes (radar is sensitive to∼3 m and the first Fres-
nel zone for GPS L1 scintillations is∼370–400 m). While
simultaneous observations of radar echoes and GPS signals
have been made earlier at other equatorial regions (e.g. Kel-
ley et al., 1996; Valladares et al., 2004; Rodrigues et al.,
2004), no such observations have been reported for the In-
dian region. The observations that we present here will not
only provide additional information on the generation and
evolution of plasma irregularities at two different scales but
also on the latitudinal and longitudinal extent of scintillations
and TEC at the time of ESF event. The main objective of this
paper is to correlate the radar echoes with GPS L-band scin-
tillations and TEC fluctuations and to bring out some of the
important features of evolution of ESF irregularities during
various types of radar echoes. The GPS observations that we
present here were made under GAGAN (GPS Aided Geo-
Augmented Navigation) project.

2 Experimental details

The observations reported here were made simultaneously
with the Indian MST radar located at Gadanki (13.5◦ N,
79.2◦ E, Dip latitude 6.3◦ N) and GPS on few occasions dur-
ing the years 2004 and 2005. Indian MST Radar is a monos-
tatic coherent radar which operates at a frequency of 53 MHz
(Rao et al., 1995). The MST radar antenna array is aligned
along the geomagnetic axis in such a way that it can be used
to study the ionospheric plasma irregularities. The radar
beam is tilted at 14–16◦ to the vertical towards north to
make it perpendicular to geomagnetic field lines at differ-
ent heights of the F region in order to detect the field aligned
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Table 1. Radar experimental parameters used for spread F observa-
tions.

Parameter Value

Radar frequency 53 MHz
Transmitter peak power 2.5 MW
Antenna beam width 3◦

Antenna 32×32
Antenna gain 36 dB
Beam direction 14–16◦ N off-zenith
Pulse width 16/32µs
Coded Uncoded
Inter-pulse period 5 ms
Number of coherent integration 1
Number of FFT point 256
Number of spectral averaging 4/8
Velocity window ±283 m s−1

Range resolution 2.4/4.8 km
Velocity resolution 2.25 m s−1

irregularities. The radar observes back scattered echo only
when irregularities of scale size equal to half the probing
wavelength are present so that Bragg’s condition is satisfied.
Hence, this radar is sensitive to approximately 3 m scale size
(λ/2, whereλ is radar wavelength) irregularities present in
the ionosphere. The radar observations basically provide
signal-to-noise ratio (SNR), Doppler velocity and spectral
width as a function of height and time. The main parame-
ters of the radar are given in Table 1.

Around 18 dual frequency GPS receivers have been in-
stalled under GAGAN project to study the Equatorial and
low latitude ionosphere and also to model the ionosphere in
this region for use in aviation over Indian region (Ramarao
et al., 2006a). Figure 1 shows the chain of GPS receiver sta-
tions installed in the Indian sector under GAGAN project.
Also presented is the location of Indian MST radar in the
same map. The type of receiver that is being used to collect
the TEC and scintillations data here is GSV 4004 A Iono-
spheric Scintillation Monitor (ISM) (Van Dierendonck et al.,
1996; Ramarao et al., 2006b). Each GPS receiver can track
up to 11 GPS C/A-code signals at L1 frequency (1.575 GHz).
The data collected is used to obtain for every 1-min inter-
val statistical parameters likeS4 index, which is the stan-
dard deviation of normalized intensity of the signal, standard
deviation of phase, receiver lock time etc. for each satellite
being tracked. The GPS satellites basically transmit radio
signals at two frequencies namely L1 (1.575 GHz) and L2
(1.227 GHz). The dispersive nature of the ionosphere causes
the two radio signals to propagate at different velocities, pro-
ducing a time delay for each signal by a certain amount. This
time delay, which is normally much smaller than the total
transit time, is proportional to the total electron content along
the line of sight to the satellite. Using the time delays for the
two signals and also the more accurate phase information,

Fig. 1. A chain of GPS receiver stations installed under GAGAN
project over Indian region. Also can be seen is the MST radar loca-
tion as a dark circle in the map.

the slant TEC (STEC) is obtained. Scintillations are pro-
duced when the signals travel through a turbulent medium,
where changes in the refractive index produce scattering. If
the irregularities are confined to a layer of thickness less than
100 km, when the radio waves emerge from the irregularity
layer, only a phase perturbation is imposed due to the irregu-
larities. Further propagation of the radio waves to the plane
of the receiver produces amplitude fluctuations in addition to
phase fluctuations. For weak scintillation, maximum contri-
bution to the amplitude fluctuation comes from irregularities
having scale size of the first Fresnel zone, which depends
on the signal wavelength and average height of the irregular-
ity layer. For GPS, this scale works out to be∼370–400 m.
Hence, GPS L-band scintillations require the presence of a
few hundred meters scale size irregularities. The strength
of this scintillation is represented by “S4 Index” which has
been defined above and is used to monitor the strength of
amplitude scintillations at L1 frequency. TheS4 index and
STEC data thus recorded are processed for each of the satel-
lite passes with an elevation mask angle greater than 30◦,
so as to eliminate the effects of multi path and tropospheric
scattering. From the STEC, the vertical TEC (VTEC) is cal-
culated using appropriate mapping function,Sf = cosχ , i.e.
VTEC=STEC*cosχ whereχ= sin−1 [

RE cosα
/
(RE+h)

]
,

α is the elevation angle,RE=Earth’s radius,h=400 km. To
identify the presence of small scale irregularities in the TEC,
a quantity DROTI, which is the standard deviation of the sec-
ond derivative of STEC, is computed at every 5 min. The
fluctuations in TEC as represented by DROTI may be theo-
retically related to theS4-index, which is not possible with
the more commonly used ROTI (Bhattacharyya et al., 2000).
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Fig. 2. The height-time-intensity (HTI) map, VTEC,S4 index and DROTI as a function of time during 7–8 February 2005, respectively.
Note that data gap is represented by gray thick line in the radar map.

3 Observations

In order to characterize the equatorial spread F irregulari-
ties, observations are classified broadly into three categories
which are presented as (a) plume (bubble) type irregularities,
(b) bottom type irregularities and (c) post mid-night irregu-
larities, respectively based on their appearance in the Height-
Time-Intensity (HTI) maps. The latitudinal and longitudinal
distribution of GPS TEC and L-band scintillations obtained
at various stations have been used to investigate the back-
ground conditions during various types of ESF events. The
azimuth and elevation angles have been used to obtain the
latitude and longitudes of theIonosphericPenetrationPoint
(IPP) for each measurement by assuming the height of the
IPP to be 400 km.

3.1 Case 1: Plume (bubble) type irregularities

Figure 2a–d shows the height-time-intensity (HTI) map,
VTEC, S4 index and DROTI as a function of time during

7–8 February 2005, respectively. TheAp index on this day
is 30 and it is a moderately magnetically active day. Fig-
ure 2a shows that while E region echoes were present right
from 19:00 IST, radar echoes started appearing initially at the
height of 250 km at about 19:45 IST as a weak layer. How-
ever, as time progressed the radar echoes started appearing at
various heights and these echoes reached as high as 600 km
in the form of plume structures. The HTI map suggests that
these echoes are very intense and exhibits complex electro-
dynamics. The signal strength of the radar echoes is found to
be more then 20 dB. Though several structures appeared in
the HTI map, broadly three plume structures can be noticed.
The first and second plume appear at 20:30 and 22:15 IST,
last one is found to appear around 23:30 IST. Though this
day is somewhat magnetically active (Ap index: 30), the
irregularities did not extend to early morning hours. Fig-
ure 2b shows VTEC as a function of time as observed over
equatorial locations of Trivandrum (TRV), and Bangalore
(BANG). Here it may be noted that we have taken the data
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Fig. 3. The polar plots corresponding to the Trivandrum and Bangalore stations on 7–8 February 2005, respectively. Here the inner circle
indicate elevation>50 deg and outer circle represent elevation>30 deg.

Fig. 4. The latitudinal distribution ofS4 index at different timings on 7–8 February 2005.

corresponding to the elevation angle>30◦. The VTEC varies
from as low as 3 TECU (1 TECU=1×1016 electrons/m2) to
as high as 40 TECU and slowly decreases as time progresses.
Observations suggest that during the time of ESF event in

the radar map, the VTEC also shows depletions or den-
sity fluctuations. This can be seen in the parameter DROTI
in the Fig. 2d. Figure 2c represents the strength of am-
plitude scintillations on L1 frequency for the time interval

www.ann-geophys.net/26/3197/2008/ Ann. Geophys., 26, 3197–3213, 2008



3202 S. Sripathi et al.: Radar and GPS observations of ESF irregularities

Fig. 5. The scatter plot ofS4 index as a function of latitude and longitude superposed onto the Indian map for(a) 20:00–21:00 IST,(b) 21:00–
22:00 IST,(c) 22:00–23:00 IST and(d) 23:00–34:00 IST, respectively, on 7–8 February 2005. Here the y-axis on the right side represents the
geomagnetic latitude.

19:00–04:00 IST. It can be seen that while theS4 index goes
as high as 0.7 over BANG station, TRV station showsS4
index only as high as 0.25 which is much less than that at
BANG station. To study the scintillations with respect to lo-
cation of the IPP elevation and azimuthal directions, polar
plots corresponding to the TRV and BANG stations are plot-
ted in Fig. 3a–b. Here, the station location is indicated by
star (*). The inner circle represents the elevation angle of
50◦, while the outer circle represents elevation angle of 30◦.
Here initial time of each PRN is displayed in UT and every
subsequent hour is represented by “+” symbol only for the
tracks which crossed theS4 index threshold. The threshold
used forS4 index is as follows: the running 5 min of mean
S4 index should exceed a value of 0.05 for more than 5 min.
The polar plot shown in Fig. 3a suggests that initially scintil-
lations start appearing at 21:00 IST in the northwest side of
the TRV station and later on the scintillations are extended to
further northern side. At almost the same time, BANG sta-
tion started recording the scintillations on the west and north
sides. The GPS satellite for which the IPP of the satellite
to BANG signal path moved closest to radar site is found to
be PRN 21 and 16 as can be noted from the figure. How-

ever the time when the IPP was closest to the radar site was
close to 14:00 UT which corresponds to 19:30 IST just be-
fore the bubble had started to grow. Figure 4a–h shows the
latitudinal distribution ofS4 index on L1 at different timings
for all the satellites which fall above elevation angle of 30
deg. for the corresponding night. The latitudinal distribu-
tion of S4 index is found to maximize around 24◦ N. Also
the time period at which maximum scintillations occurred is
found to be∼20:00–22:00 IST. Closer observations suggest
that weak scintillations have been observed near to radar site
after 14:30 UT (20:00 IST) which coincides with the radar
echoes.

Figure 5a–d represents the scatter plot ofS4 index on L1
as a function of latitude and longitude superposed on the In-
dian map for (a) 20:00–21:00 IST, (b) 21:00–22:00 IST, (c)
22:00–23:00 IST and (d) 23:00–24:00 IST, respectively, on
7–8 February 2005. The color and size of the circle indicates
the strength of theS4 index at that particular time. The ob-
servations reveal that while theS4 index at the low latitudes
is found to be about 0.4, it reaches 0.7 at about magnetic
latitude of 15◦ during 20:00–22:00 IST. L-band scintillations
have been observed over the entire band of magnetic latitude
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Fig. 6. The VTEC plotted on 7–8 February 2005 starting from 12:00 IST to 23:00 IST with an interval of one hour. Here the y-axis on the
right side represents the geomagnetic latitude.

from 5◦ to 15◦ degrees. The maximum scintillations have
been found to occur at about 20:00–22:00 IST. Figure 6a–l
represents the VTEC plotted in a manner similar toS4 Index
for the same day starting from 12:00 IST to 23:00 IST for ev-
ery one hour. The size and color of the circle in the each
plot is indicative of the strength of the TEC at that particular
time. Here it may be noted that a weak equatorial ionization
anomaly is formed at 19:00 IST and it extends to up to 15◦

magnetic latitude between 20:00 and 21:00 IST.

3.2 Case 2: Bottom type irregularities

Figure 7a–d shows the height-time-intensity (HTI) map,
VTEC, S4 index and DROTI respectively as a function of
time during 21–22 March 2004, similar to that of Fig. 2a–
d. TheAp index on this day is 11 and it is a magnetically
quiet day. Figure 7a reveals that the F region plasma irreg-
ularities are mostly observed at lower heights (<300 km) at
about 20:30 IST in the initial period and it does not extend

to higher altitudes. These irregularities are observed in the
form of very thin layer having width of 50 km. Also, the
strength of the small scale irregularities is found to be very
weak at most of the times. But as time progresses, the small
scale irregularities, some times, found to extend to heights as
high as 400 km. The E region echoes are also seen in this
HTI map but they are very weak and intermittent. Figure 7b
shows the VTEC as a function of time for the correspond-
ing period at TRV and Port Blair (PTBR). It may be noted
that Portblair (11.67◦ N, 92.72◦ E) is located about 16 de-
grees east of Trivandrum. Unfortunately, on this day, data
is not available from BANG station. TheS4 index at TRV
is shown in Fig. 7c. At TRV, the strength of theS4 index
for L1 is lower when comparing to the earlier. Figure 8a–b
shows the polar plots corresponding to the stations (a) TRV
and (b) PTBR, which are quite similar to the Fig. 3a–b. The
polar diagram shown over TRV indicates that weakS4 index
is seen in the northwest side of the radar site around 17:30 UT
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Fig. 7. The height-time-intensity (HTI) map, VTEC,S4 index and DROTI as a function of time during 21–22 March 2004, respectively.
Note that data gap is represented by gray thick line in the radar map.

(23:00 IST). The polar diagram over PTBR shows no scin-
tillation. Further, the analysis ofS4 index indicates that on
this night, scintillations have been observed only at Trivan-
drum and Mumbai (MUMB) stations which are in western
side of India. However, scintillations have not been observed
at Kolkatta (KOLK) and Portblair stations which are in the
eastern side of the India. Though this analysis is performed,
we have not shown here due to limited space. Hence, we as-
sume that the irregularities are highly restricted in longitude
and occurred only in narrow longitude band. Figure 9a–h
shows the latitudinal variation ofS4 index at different tim-
ings for the same night. From the figure, it is clear thatS4
index is small at higher magnetic latitudes.

Figure 10a–l represents the VTEC plotted in a manner
similar to the S4 index for the same day starting from
12:00 IST to 23:00 IST for every one hour. On this day the
TEC is much larger throughout the day compared to that on
7 February 2005. Although a strong EIA is seen during post-
sunset hours, it is possible that on this day, various other fac-

tors such as F region height, PRE and thermospheric neutral
winds could have inhibited the EPB generation. It is also
possible that on this day, the electron densities are high in
the E region at the feet of geomagnetic field-lines connecting
to the bottomside of the F-region. This would prevent the de-
velopment of EPBs and the R-T instability would evolve into
km scale bottomtype irregularities (Bhattacharyya, 2004).

3.3 Case 3: Post mid-night irregularities

Figure 11a–d shows the height-time-intensity (HTI) map,
VTEC, S4 index and DROTI respectively as a function of
time during 27–28 May 2004. TheAp index on this day
is 04 and it is a magnetically quiet day. Figure 11a shows
that the F region plasma irregularities of∼3 m scale size
started appearing above Gadanki at about mid-night and ex-
tended till next day morning 04:00 IST. Here, the appearance
of the irregularities is found to be of plume type and the ir-
regularities have been observed at heights as high as 500 km.
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Fig. 8. The polar plots corresponding to the stations(a) Trivandrum and(b) Port Blair on 21–22 March 2004, respectively. Here the inner
circle indicate elevation>50 deg and outer circle represent elevation>30 deg.

The observations suggest that the plumes have multi echoing
structures and are separated in time by about half an hour.
Also the strength of the small scale irregularities is found to
be very high at most of the times. On this night, the up-
per E region echoes display QP echoes in the pre-midnight.
The QP echoes having positive striation with vertical wave-
lengths of 20–25 km can be seen in the HTI map. When F
region echoes started appearing in the radar map, we see dis-
appearance/weakening of E region echoes. In Fig. 11b, the
density fluctuations present in VTEC, which are revealed in
DROTI, correspond to scale sizes of∼3 km if we consider
the irregularities to drift across the signal path with a veloc-
ity of ∼50 m/s. In Fig. 11c, it can be noted that very weak L-
band scintillations (S4<0.2) have been recorded at both TRV
and BANG stations. However, DROTI, shown in Fig. 11d,
suggests that there are TEC fluctuations recorded at both sta-
tion. This indicates that TEC fluctuation do exist without L-
band scintillations also. Figure 12a–h shows the latitudinal
variation ofS4 index on L1 at different timings for the corre-
sponding night. From the figure, it is clear that theS4 index
is negligibly small. The L-bandS4 index does not show any
significant scintillations on the L1 frequency on this night. In
Fig. 13a–l it is seen that on this day the equatorial ionization
anomaly is not formed at all.

4 Results and discussion

The observations presented in Sect. 3.1 reveal that significant
GPS L band scintillations, depletions in TEC and DROTI ob-
served at locations close to the dip equator are associated
with the strong plume type radar echoes extending to high
altitudes during pre-midnight period. L band scintillations

in this case 1 are considerably stronger at low latitude sta-
tions relative to that of other two cases presented. The GPS
observations also show intense L band scintillations at wide
range of latitudes for this situation. The observations also
show that for plume type radar echoes in the pre-midnight
period, the observed scintillations extend to higher latitudes.
This can be explained by the field line mapping of the ir-
regularity structures to higher latitudes during ESF events
showing plume type structures that extend to higher altitudes.
In contrast, when low altitude echoes and weak echoes are
seen during early phase at radar site, L band scintillations
are found to be weaker/absent at low latitude stations. Ab-
sence of L-band scintillations at higher latitudes during bot-
tom type ESF events can also be understood through field
line mapping. Valladares et al. (2004) have presented GPS
TEC and scintillation measurements using a network of GPS
receivers at Peru. They have found that intense GPS scintil-
lations coincide with the TEC depletions and radar plumes.
Our results support their observations that strongest L-band
scintillations occur at EIA crest locations in association with
radar plumes whereas bottomtype irregularities are associ-
ated with weak L-band scintillations. Observations using
GPS and radar at an equatorial station in Brazil are reported
by Rodrigues et al. (2004). They have also shown that there
is a strong correlation between plume type irregularities and
S4 index at L1 frequency. Further, their observations reveal
that small-scale irregularities seen in the radar are short lived
as compared to the L-band scintillations, which are associ-
ated with irregularities of scale size∼370–400 m as well as
ionosonde observations of spread F (scale size of tens of me-
ters). This they have attributed to the earlier decay of smaller
scale size irregularities due to diffusion. However, due to
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Fig. 9. The latitudinal variation ofS4 index at different timings on 21–22 March 2004.

lack of GPS observations at other locations in their observa-
tions, they were not able to study the latitudinal distribution
of S4 index. The analysis that we have presented here us-
ing GAGAN data overcomes this problem. Here we were
able to analyze the latitudinal, longitudinal and temporal dis-
tribution of S4 index over Indian region. However, the ob-
servations presented here as a few case studies are for low
solar activity period (2004–2005), and hence it reveals the
temporal and spatial variation of GPS scintillations and TEC
under low solar activity background conditions. Our obser-
vations suggest thatS4 index maximizes around 20◦–25◦ N
geographic latitude during pre-midnight plume type irregu-
larities. Further, our observations also suggest that L band
scintillations are found to be strong at the equatorward edge
of the EIA where the Rayleigh-Taylor instability may give
rise to a few hundred meter scale size irregularities. This has
also been observed by Ramarao et al. (2006a) and Muella et
al. (2008). 3-D simulation of RT instability also shown that
sharp density gradients do exists at equatorial anomaly lati-
tudes (Keskiken et al., 2003).

While most of the features seen in case-1 and case-2 are
similar to those of the earlier observations reported elsewhere
and also consistent with current theory, the observations that
we have presented in case-3 are different from earlier find-
ings since we do not see any strong L-band scintillations even
though strong radar echoes are seen at higher altitudes. The
observations further suggest that there is no EIA formation
on this day. To understand these observations, we invoke
the basic plasma instability processes responsible for gener-
ating the irregularities of scale sizes that give rise to radar
echoes and GPS scintillations respectively. It is generally
observed that after plasma irregularities are generated in the
post-sunset hours during magnetically quiet days, they drift
to the east with the ambient plasma after about 22:00 LT. Be-
fore 22:00 LT, due to the presence of the perturbation electric
field associated with the R-T instability, the drift velocity is
found to fluctuate randomly whereas after 22:00 LT, when
these perturbation electric fields have decayed, the bubbles
just drift with the background plasma without any evolution
and are called as “dead bubbles” or “fossil structures” (Bhat-
tacharyya et al., 2001).
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Fig. 10. The VTEC plotted on 21–22 March 2004 starting from 12:00 IST to 23:00 IST for every one hour. Here the y-axis on the right side
represents the geomagnetic latitude.

In order to identify whether these irregularities are freshly
generated or drifted in from the west, we have plotted
the maximum cross-correlation of amplitude scintillations
recorded by VHF (251.45 MHz) spaced receivers located at
Tirunelveli (8.7◦ N, 77.8◦ E, Dip: 0.4◦ N), an equatorial sta-
tion in India and ionosonde virtual height of the F layer ob-
tained at Trivandrum (8.48◦ N, 76.95◦ E, Dip: 0.5◦ N), also
an equatorial station along with average spectral width of the
radar echoes obtained from Gadanki as a function of time
for all three cases. Same is shown in Fig. 14a–c which con-
tain five panels each representing VHFS4 index, spectral
index m derived from the slope of the power-law type of
spectrum of weak amplitude scintillations, maximum cross-
correlation of spaced receiver scintillation records (Ci),h′F

from ionosonde observations and average spectral width de-
rived from radar observations respectively on 7–8 Febru-
ary 2005, 21–22 March 2004 and 27–28 May 2004. We
could record VHF scintillations on only single receiver at

Tirunelveli instead of spaced receivers on 27–28 May 2004
and hence only spectral index is plotted for 27–28 May 2004.
The spectral index is calculated only during weak scintil-
lations whereS4 index lies between 0.15 and 0.5, so that
the spectral index could be associated with the irregularity
power spectrum in accordance with weak scintillation the-
ory. Based on spectral index, we can also identify whether
the observed weak scintillations are due to freshly gener-
ated irregularities or they are produced by bubbles drifting
in from the west. While low spectral index (≤3) indicates
significant presence of small scale (few hundred meters) ir-
regularities, higher values of spectral index are indicative
of decay of these smaller scale size irregularities. Figure-
14a suggests that during plume type irregularities, the cross-
correlation index (Ci) also falls below 0.5, while the spectral
slopes are found to have values as low as 3 in the early phase
of scintillations. However, as time progresses, there is in-
crease in the spectral index (m) as well as Ci index. The
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Fig. 11.The height-time-intensity (HTI) map, VTEC,S4 index and DROTI as a function of time during 27–28 May 2004, respectively. Note
that data gap is represented by gray thick line in the radar map.

height averaged spectral width determined from radar ob-
servations in case-1 in the pre-midnight period is found to
have 2 peaks as high as 200 m/s, while at later times a value
of about 100 m/s prevails. Ionosonde observation of F re-
gion height over Trivandrum indicates that the F layer height
had increased to 400 km due to PRE in the post-sunset hours.
Figure 14b suggests that during bottmtype irregularities, the
cross-correlation index is found to be almost 1 except for
some time during post-midnight at which time Ci index is
found to be 0.7. The spectral index is about 4–5. The height
of the F layer is found to increase in the early phase to as
high as 375 km. The average spectral width of the radar is
found to be as low as 75 m/s. Figure 14c suggests that dur-
ing post-midnight, the spectral index is found to be constant
with value of about 5. The F layer on this night did not go to
very high altitudes during pre-midnight and post-midnight,
remaining less than 300 km throughout the night. The spec-
tral width of the radar is found to be 150 m/s and is less than
the spectral width observed in the pre-midnight (case-1).

Bhattacharyya et al. (2001) have analyzed VHF scintilla-
tion data recorded using spaced receivers and devised a tech-
nique to identify whether the irregularities are freshly gener-
ated or they are fossil bubbles that have just drifted in from
west. They have reported that in the initial growth phase of
the plasma bubbles, the maximum cross correlation (Ci) of
the spaced receivers’ scintillations is found to be low (<0.5)
and the zonal drift of the plasma bubbles is found to be highly
variable. Based on scintillation observations alone they sug-
gested that the cross correlation index (Ci) of the spaced re-
ceivers’ scintillations may be used to study the dynamics of
the equatorial plasma bubbles. Tiwari et al. (2006) have pre-
sented the HF radar observations at TRV made simultane-
ously with spaced VHF receiver scintillations at Tirunelveli.
They have shown that when plume type irregularities have
been observed in the radar maps during the growth period,
the cross correlation index (Ci) of the spaced receiver signals
is low. The spectral width observed by the radar during this
time is found to be enhanced and is anti-correlated with that
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Fig. 12. The latitudinal variation ofS4 index at different timings on 27–28 May 2004.

of the cross correlation index (Ci). They have attributed this
to the increased turbulence in the growth phase of the irreg-
ularities. Another study by Patra et al. (2005), who studied
the spectral width of two radars using HF and VHF at equa-
torial stations, also reported that in the initial phase of the
plasma bubbles the spectral width is found to be very high
(300 m/s). The observations of fall in Ci index below 0.5 and
high spectral width during early phase of plume observations
by radar, presented by Tiwari et al. (2006) and our observa-
tions are in agreement. In contrast to this, when bottomtype
irregularities are seen in the radar map, the cross correlation
index (Ci) does not decrease. The spectral width observed
in the radar during the same time is found to be low. Tiwari
et al. (2006) have attributed this to the large scale sinusoidal
perturbations on the bottomside of the equatorial F region.
Our observations presented here indicate that the bottomtype
irregularities do not contain small scale irregularities of a few
hundred meter scale size and also that spectral width ob-
served during bottomtype irregularities is quite low, which
is in agreement with the observations of Tiwari et al. (2006).
Niranjan et al. (2003) have studied the post mid-night spread

F over Waltair, India, using ionosonde observations. They
have suggested that most of the time, post midnight irreg-
ularities are found in the summer months and out of them
80% of the cases were associated with rise of F layer height
to higher altitudes. They further suggested that (a) if spread
F occurs following rise in F layer height, occurrence of fresh
generation of irregularities is more; and (b) if spread F occurs
without rise in F layer height, it could be related to the fossil
structures that could have drifted in from west. It is interest-
ing to note that our observation of post midnight also related
to summer month. The observations presented here for the
case-3 show that (a) F layer height did not rise to higher al-
titudes during the time of radar echoes, (b) the irregularity
power law spectrum derived from weak VHF scintillations
has high spectral index, (c) radar echoes have low spectral
width and (d) PRE is absent in the pre-midnight hours. So,
with these findings, we are in a position to state that these
irregularities are not freshly generated over the observation
region but they were generated some where to the west of
Tirunelveli and Gadanki and drifted to the east as a “dead
bubble” or “fossil bubble”.
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Fig. 13. The VTEC plotted on 27–28 May 2004 starting from 12:00 IST to 23:00 IST for every one hour. Here the y-axis on the right side
represents the geomagnetic latitude.

Now, we shall consider here the TEC data plotted for 3
cases to understand further about the physical concept. It
may be noted that in case-1 and case-2, the observations over
TRV suggest that the temporal variation of TEC is found to
be mostly quite similar though there are certain differences.
In the initial time of observations, when radar observations
show∼3 m scale irregularities, the large scale TEC deple-
tions are also noted. The minimum TEC over TRV in case-
1 is less than that in other two cases indicating the role of
strong density depletions during the time of ESF in case-
1. It may be noted that since this day is also magnetically
somewhat active, the eastward electric field due to prompt
penetration could have enhanced theE×B drift and hence
leading to the minimum TEC over equator. The slope of
the decrease in TEC in the initial phase of ESF in case-1
is much more rapid than that of case-2. In the post midnight
sector, however, TEC interestingly increased for nearly one
hour before it gradually decreased in both case-1 and case-2.

The TEC maps also suggest that TEC enhancement is slowly
moving towards equatorward for these two cases. But, such
an increase in TEC is not seen over TRV in the case-3 dur-
ing post-midnight. This can be understood through the PRE
of theE×B drift of the F layer and also through meridional
wind circulation. In the first two cases, the PRE is found to
be high (as suggested through ionosonde) and hence, due to
PRE, F layer is lifted to higher altitudes during pre-midnight
and then plasma is descended to the higher latitudes through
plasma diffusion along the magnetic field lines. However,
in the post-midnight sector, the ionization which is accumu-
lated at higher latitudes could again be pushed to the lower
latitudes through the reverse fountain effect as reported by
Muella et al. (2008). This could lead to the enhancement
in TEC at equatorial station as observed in our first two
cases. But in the case-3, since there was no PRE observed
in the ionosonde observations and hence the plasma irreg-
ularities are associated with fossil bubbles, post-midnight
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Fig. 14. Panels(a–c) contain five panels each representingS4 index, spectral index (m), cross-correlation index (Ci),h′F and average
spectral width, respectively, on 7–8 February 2005, 21–22 March 2004 and 27–28 May 2004.

enhancement in TEC is not seen because there was no ac-
cumulation of ionization at higher latitudes earlier.

The question that still remains is why L-band scintillations
are not observed on this night although radar is able to detect
∼3 m scale irregularities. The answer lies in the scale size
of the irregularities that produce radar echoes, L-band scin-
tillations and VHF scintillations. In the decay phase of the
irregularities, the small scale irregularities would decay first
and only∼km scale size irregularities would be able to focus
the VHF signal which enhances theS4 index at VHF (e.g.
Bhattacharyya et al., 2003). But since few hundred meter
irregularities have decreased, this leads to the weakening of
L-band scintillations at this stage. However, the∼3 m scale
size irregularities which radar observes can not be generated
directly through the R-T instability process. They are gener-
ated through other instabilities such as the drift-wave insta-
bility. The gradients due to kilometer scale structures could
produce several secondary wave modes. This could lead to
the generation of∼3 m scale waves for which radar is sen-
sitive. Hence the reason for the absence of L-band scintilla-

tions is that∼370–400 m scale size irregularities which are
produced by R-T instability itself might not have sufficient
strength to produce observable scintillations on L-band.

5 Summary and conclusion

The simultaneous observations of radar and GPS presented
above reveal that a good correlation exists between radar
echoes and GPS scintillations only when the plume type
echoes reach higher altitudes in the pre-midnight sector.
Here, the latitudinal distribution of L-band scintillations
shows that the strength ofS4 index maximizes at about 22◦ N
latitude. The GPS observations also suggest that both bottom
type and post midnight irregularities do not give rise to sig-
nificant L-band scintillations. A new observation is related
to the detection of dead bubble in the post-midnight hours.
Absence of L-band scintillations during post-midnight sec-
tor indicates the decay of irregularities of scale sizes of a
few hundred meters. At the same time small scale (∼3 m)
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irregularities could have been generated through secondary
waves on the walls of km scale size irregularities associated
with a fossil bubble which produce VHF but not L-band scin-
tillations; and these 3 m scale irregularities gave rise to radar
echoes, although L-band scintillations were absent.
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