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Nonlinear evolution of Alfvnic wave packets 

B. Butt, 1 V. Jayanti, • A. F. Vifias, 3 S. Ghosh, • M. L. Goldstein, 3 D. A. 
Roberts, 3 G. S. Lakhina, 1 and B. T. Tsurutani 1 

Abstract. Alfv•n waves are a ubiquitous feature of the 
solar wind. One approach to studying the evolution of 
such waves has been to study exact solutions to approx- 
imate evolution equations. Here we compare soliron 
solutions of the Derivative Nonlinear SchrSdinger evo- 
lution equation (DNLS) to solutions of the compress- 
ible MHD equations. We find that the soliron solu- 
tions of the DNLS equation are not stable solutions of 
Hall-MHD--they evolve and dissipate with time. Al- 
though such solirons may serve as approximate initial 
conditions to the Hall-MHD equations, they are not sta- 
tionary solutions. This may account for the absence of 
soliron-like wave forms in the free-flowing solar wind. 

Introduction 

Alfv•n wave trains have been observed in the solar 

wind [Belcher and Davis, 1971], in the vicinity of plan- 
etary and interplanetary shocks [Agim et al., 1995] and 
near comets [Scarf et al., 1986; Goldstein et al., 1990]. 
The evolution of finite amplitude low frequency waves 
can be best studied by solving the magnetohydrody- 
namic (MHD) equations, however, those equations are 
highly nonlinear and are not amenable to analytic so- 
lutions except in very special (or linear) cases. Thus 
it is difficult to explore efficiently all relevant regions 
of parameter space. Consequently, for finite but small 
amplitude MHD waves, a variety of evolution equations 
have been derived which have the advantage that exact 
analytic solutions can sometimes be found. 

One of the most widely used equations is the Deriva- 
tive Nonlinear SchrSdinger (DNLS) equation [Kennel et 
al., 1988]. $pangler [1997] pointed out that although the 
DNLS equation is only formally valid for 5B/B • 1, 
many nonlinear wave characteristics including wave- 
packet steepening, shocklet formation, and the evolu- 
tion of polarization can be addressed by the DNLS equa- 
tion. Consequently, the DNLS formalism has been ap- 
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plied to the study of low frequency waves upstream of 
the Earth's bow shock. 

However, for large amplitude waves (SB/B _• 1), the 
approximations leading to the DNLS equation become 
invalid because the derivation includes terms only up 
to cubic nonlineartries. In addition, solutions of the 
DNLS equation are not valid for • -• 1, where • is 
the ratio of thermal to magnetic energy. For • -• 1, 
coupling between Alfv•n waves and ion acoustic waves 
becomes significant. Consequently, one has to use scal- 
ings different than those used in the derivation of the 
DNLS. In deriving the DNLS equation the density is as- 
sumed to vary on a slower time scale than the magnetic 
field. Hada [1993], using different stretchings, showed 
that a system of coupled equations for the density and 
magnetic field fluctuations is required to describe the 
interaction of ion acoustic and Alfv•n waves. 

Recently, Roychoudhury et al. [1997], employing a 
Painl•ve analysis of the equations of Hada [1993], showed 
that, unlike the DNLS equation, the equations studied 
by Hada [1993] are not completely integrable. However, 
under translational invariance, it is possible to get a soli- 
ron solution in terms of hyperelliptic functions. In this 
letter we concentrate on comparing the solutions of the 
DNLS equation with solutions of the Hall-MHD system. 
We will address in subsequent work the question of how 
well some of the more recent extensions of the DNLS 

formalism succeed in describing such phenomena as the 
formation of discontinuities (see, for example, Mjolhus 
and Hada [1997]; Medvedev et al. [1997]. 

In the solar wind, •, Te and Ti all vary with hello- 
spheric distance. In particular, • spans the entire range 
from small to large values. Consequently, depending on 
location in the heliosphere, use of the DNLS equation to 
explore the evolution of Alfv•nic wave packets can be 
inadequate and it becomes necessary to solve the full 
set of MHD equations. A major goal of this letter is 
to ascertain the extent to which solutions of the DNLS 

equation represent an adequate approximation to so- 
lutions of the MHD equations. To explore this issue, 
we employ a one-dimensional MHD code including the 
Hall term (to account for the dispersive effects) to study 
the temporal evolution of large amplitude Alfv•nic soli- 
rons and wave packets. Our simulation results are valid 
for any Te / Ti ratio, but are restricted to quasi-parallel 
propagation. Because solirons are exact solutions of the 
DNLS equation, we have used them as initial conditions 
to the MHD equations. The DNLS equation is not valid 
for very large amplitude fluctuations, consequently, we 
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Figure 1. (a) The evolution of the magnetic and den- 
sity fluctuations, B and •p, respectively, for a RHP soli- 
ton for • - 0.3 at t • 40f• 1 (dashed line) and at 5000 
f•l (solid line). (b) Same as (a) but for • - 1.5. 

take 6B/B - 0.25 in the MHD solutions shown here. 
In addition, the solutions we show are for values of • 
not near unity. The evolution of the solitons is then 
followed to see if they remain stable. 

The evolution of Alfv•nic wave packets has been stud- 
ied previously by Roberts and Wiltberger [1995] using a 
one-dimensional MHD code. That study focused on the 
evolution of linearly polarized Alfv•n waves rather than 
soliron-like wave packets and concluded that the waves 
evolved into quasi-steady MHD states that resembled 
neither solitons nor discontinuities. 

Formulation and Simulation Results 

Stability of DNLS solirons 

For these calculations, we assume that the compress- 
ible two-fluid MHD equations include a scalar pressure 
p - p(p), where p - Pe q- Pi, P is the density. In dimen- 
sionless units, the equations can be written in the form 
[Sakai and Sonnerup, 1983] 

Op 0 
O--• + •x (pux) -0 (1) 

+ + -0 
o o 

+ : 0 Ox 

oW + = 
O• 0 

+ + - 1)Z = 0 (s) 
where um is the flow velocity along the direction of prop- 
agation, b is the magnetic field, • = (by + i bz) and 
• - (vy + i vz). The magnetic fields are normalized 
to Bo, velocities to the Al•6n speed, VA; pressure to 
B•/(4•); and p to Po. Bo and Po are the equilibrium 
magnetic field and the density respectively. 

For • • 1, these equations have been simplified us- 
ing reductive perturbation methods [Taniuti and Wei, 
1968], which, for magnetic fluctuations carried to third 
order, yield the DNLS equation. 

iO 2 B OB I 0 (B i B i2) q- -0 (6) Ot q-4(1-/9) 0x • Ox 2 -- ' 
where B = (By -Fi Bz). All the quantities in eqn. (6) 
are dimensionless. Because solutions to the Hall-MHD 

equations rarely form quasi-stationary final states and 
almost never relax to simple solitons, we have used ex- 
act soliton solutions of the DNLS equation as initial 
conditions to the MHD equations to test the DNLS so- 
lutions. Here we do not address the question of how 
such a soliton initial condition might arise in nature. 
We take the following solitoh solution of eqn. (6) [No- 
cera and Buti, 1996] as the initial condition for the MHD 
equations: 

(21/2 -- 1) 1/2 Bmax e iO (x) 
B(x, to) = [21/2 cosh(2Vsx) - 111/2' (7) 

where Smax is the amplitude of the soliton, 

0 (x) = - Vs x + 8(1 - /9) IS I ax' (8) 
and V8 is the soliton speed defined by, 

Bream Vs = (21/2 - 1) 2 8 (1 - /9) ' (9) 
The MHD system of equations were solved using 

Fast Fourier Transforms (FFTs) to evaluate the spatial 
derivatives. For the time integration we used a fourth 
order Adams-Bashforth scheme [Hamming, 1962]. Vis- 
cous dissipation (e.g.,[Ghosh et al., 199•])was added to 
the momentum equation to suppress aliasing errors at 
high wave numbers. 

The initial soliton was defined over a 2550VA/[lp size 
box with 256 grid points ([lp is the proton cyclotron 
frequency). To check the accuracy of our numerical 
scheme, we simulated the dynamics of this initial soli- 
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Figure 2. (a) Same as Fig. la but for LHP soliton. 
(b) Same as Fig. lb but for LHP soliton. 
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Figure 3. Same as Fig. la but for an initial soliton 
with • - 3.0. Thicker solid line is for t - 5000f• • and 
thinner one for t - 0. 

ton using the DNLS equation and confirmed that the 
soliton remains stable. We first examined the evolution 

of both right-hand polarized (RHP) and left-hand po- 
larized (LHP) solitons for a range of values of •. The 
results are shown in Figures 1 - 3 where the amplitudes 
of the fluctuations in the magnitude of the magnetic 
field, B, and fluctuations in the density p are plotted. 
Selected power spectra are plotted in Figure 4. 

Figures la and lb illustrate the evolution of the 
magnetic field and the density from t = 40f• • to 
t - 5000f• • for the RHP soliton for • - 0.3 and 
• - 1.5, respectively. The waves steepen at intermedi- 
ate time, and then form wave trains on the leading edge 
for • < 1, and on the trailing edge for• > 1. The 
corresponding evolution of LHP solitons with • = 0.3 
and 1.5, respectively are shown in Figures 2a and 2b. 
Figure 3 shows the evolution for • = 3 for a RHP soli- 
ton. By t = 5000f• • (thick solid line) the soliton initial 
condition has again evolved substantially away from the 
initial state (thin solid line). In this case however the 
wave train has almost disappeared. That the soliton 
initial condition is an approximate equilibrium is em- 
phasized by the fact that at t - 40f• • (dashed line) 
the shape of the wave packet is essentially unchanged 
from the initial condition. 

Figure 4 shows the power spectra of the magnetic 
field corresponding to the solutions shown in Figures 1 
and 2 at t = 5000f• •. Although all the power spectra 
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Figure 4. Trace of the wave number power spectra of 
the fluctuating magnetic field obtained from the wave- 
form solutions shown in Figures I and 2 at time t - 
s000•; • 

to the transverse magnetic field, which is assumed in 
deriving the DNLS equation, holds well in the early 
phase of the nonlinear evolution of the wave packet (cf. 
t - 0 and t - 40f•p); however it soon becomes in- 
valid. This failure is independent of both polarization 
and fl. Similar conclusions on the limitations of the 
DNLS equation were reached by $pangler [1997] (also 
see, Agim et al. [1995]). In the DNLS framework, the 
slow variations in density force a correlation of den- 
sity with magnetic field--a constraint not imposed on 
the Hall-MHD equations. Consequently, the relatively 
smooth and slow evolution of the wave packet indicates 
that DNLS solitons are approximate equilibrium initial 
conditions. However, the DNLS solitons are not long- 
time solutions of the MHD equations. 

Conclusions 

Solutions of the compressible MHD equations evolve 
in such a way that the soliton initial condition steepen 
at the leading or trailing edge depending on the initial 
wave polarization and also on whether • is less than 
or greater than unity. On the opposite edges, i.e., on 
the edges where no steepening is seen, wave trains form 
as the soliton evolves away from its initial state. The 
soliton loses its inherent stability even though it is prop- 
agating in a homogeneous non-driven system. Such be- 
havior is expected of the DNLS soliton in a driven sys- 
tem [Hada et al., 1990] or in an inhomogeneous system 
[Buti, 1991]. These features indicate that the Alfv•n 
waves are coupling to density fluctuations that are not 
described properly by the DNLS equation. Because of 
this coupling, as shown by Roychoudhury et al. [1997], 
the soliton cannot remain coherent. 

The DNLS equation relies on the implicit static rela- 
tionship between magnetic field and density fluctuations 
and the neglect of higher order couplings (cf. Span- 
gler [1997]). These approximations break down with 
time as seen in the simulation results. Even though the 
DNLS equation is a good model for studying a number 
of nonlinear wave properties, the interpretation should 
be limited to finite time scales, even for relatively small 
wave amplitudes. One has to rely on the simulation of 
the Hall-MHD equations to get the true picture of the 
long term evolution of the wave-trains and wave-packets 
such as those observed in the solar wind. 
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