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We perform one-dimensional fluid simulation of ion acoustic (IA) solitons propagating parallel to

the magnetic field in electron-ion plasmas by assuming a large system length. To model the initial

density perturbations (IDP), we employ a KdV soliton type solution. Our simulation demonstrates

that the generation mechanism of IA solitons depends on the wavelength of the IDP. The short

wavelength IDP evolve into two oppositely propagating identical IA solitons, whereas the long

wavelength IDP develop into two indistinguishable chains of multiple IA solitons through a wave

breaking process. The wave breaking occurs close to the time when electrostatic energy exceeds

half of the kinetic energy of the electron fluid. The wave breaking amplitude and time of its

initiation are found to be dependent on characteristics of the IDP. The strength of the IDP controls

the number of IA solitons in the solitary chains. The speed, width, and amplitude of IA solitons

estimated during their stable propagation in the simulation are in good agreement with the

nonlinear fluid theory. This fluid simulation is the first to confirm the validity of the general

nonlinear fluid theory, which is widely used in the study of solitary waves in laboratory and space

plasmas. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4810794]

I. INTRODUCTION

Solitary waves (or solitons) are the localized structures

that arise due to the balance between nonlinearity and the

dispersive effects in the medium. They are observed in many

physical systems, including water,1 plasma,2 liquid helium,3

and optics.4 Especially, they have been studied intensively

for decades in regard to a broad range of physical problems

related to space5–7 and laboratory plasmas.8–10

In plasmas, the solitary waves are observed as isolated

nonlinear phenomena exhibiting either unipolar, bipolar, or

tripolar pulses in the electric field. Among these, the bipolar

electric field pulses are generally observed in plasmas and are

recognized as electron or ion solitary waves. Theoretically,

they are interpreted as either Bernstein-Greene-Kruskal

(BGK) electron/ion phase space holes11–13 or electron/ion

acoustic (IA) solitons.14–17

BGK phase space holes consist of vortices in electron/

ion velocity space due to the trapping of particles in an elec-

tric potential and are described by solitary-wave solutions

of nonlinear Vlasov-Poisson equations in a collisionless

plasma.18 Based on the particle simulation,5,19 it was pro-

posed that these solitary waves can be generated by the

nonlinear BGK mode attained from an electron beam insta-

bility. Other generation mechanisms for the solitary waves

are based on the nonlinear evolution of electron two stream

instabilities.20–22

The electron and ion acoustic soliton models are based

on the multi-fluid approach. There are numerous contribu-

tions to the theory of multiple-species plasma for the ion and

electron acoustic waves within the context of the fluid-

Poisson equations. The critical Mach numbers predicted by

these models are based on isothermal and adiabatic treat-

ments of the electrons.23,24 Most of the soliton models are

based on the reductive perturbation technique, which makes

it possible to reduce governing nonlinear equations to the

Korteweg-de Vries (KdV) equation.25–27 The solutions of the

KdV equation represent small amplitude electron or ion

acoustic solitons. This technique is based on the assumption

that the amplitude of the wave is small, and thus cannot be

applied to the study of large amplitude solitary waves.

Furthermore, a number of attempts have been made in the

past studies to solve the initial-value problem of the KdV

equation for the prediction of exact solitons.28,29

Other multi-species plasma models are based on the

pseudo potential approach, which is renowned and has been

extensively used in the study of stationary arbitrary ampli-

tude solitary waves.16,24,30–40 Although these models predict

the Mach number (soliton speed) range for the existence of

stationary solitons, they do not provide information on their

generation mechanisms and time evolutionary dynamics.

To address these issues, we carry out one-dimensional

fluid simulations to investigate generation and evolution of

nonlinear IA solitary waves in an electron-ion warm plasma.

This paper is structured as follows. The model equations

and the numerical scheme used for development of the

simulation code are given in Sec. II. The simulation results

are discussed in Sec. III. The nonlinear fluid theory for IA

solitary waves is described in Sec. IV. In Sec. V, the results

obtained from the fluid simulations are compared with the

nonlinear fluid theory. A phenomenon of wave breaking

is discussed in Sec. VI and the results are concluded in

Sec. VII.
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II. BASIC SET OF EQUATIONS AND COMPUTATION
METHODS

We consider a homogeneous, collisionless two-component

plasma consisting of fluid electrons and fluid ions (Hþ ions).

For the nonlinear IA waves propagating parallel to the mag-

netic field, the dynamics of the electrons and ions is governed

by the multi-fluid equations of continuity, momentum, and

energy of each species, and the Poisson equation as follows:

@nj

@t
þ @ðnjvjÞ

@x
¼ 0; (1)

@vj

@t
þ vj

@vj

@x
þ 1

ljnj

@Pj

@x
� Zj

lj

E ¼ 0; (2)

@Pj

@t
þ vj

@Pj

@x
þ cjPj

@vj

@x
¼ 0; (3)

@E

@x
¼ ni � ne; (4)

The electric field (E) in the above set of equations can be

written in terms of an electrostatic potential (/) with the

relation, E ¼ �@/=@x. In the equations listed above, the

subscripts j¼ e and i are, respectively, used for electrons and

ions. The variables nj, Pj, and vj are plasma density, pressure,

and velocity of the species j, respectively. Here, lj¼mj/mi,

where mj and Zj, respectively, represent the mass and charge

of the jth species (i.e., Ze¼ -e for electron and Zi¼ e for

ions). Further, densities are normalized with the background

ion density ni0, velocities with the ion thermal velocity

Ci ¼ ðTi=miÞ1=2
, time with the inverse of ion plasma fre-

quency x�1
pi , length with the ion Debye length, electric fields

E with Ti=ekdi, and thermal pressures Pj with n0Ti. Here,

ni0 ¼ ne0 ¼ n0, xpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0e2=�0mi

p
, and kdi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0Ti=n0e2

p
.

We assume the same adiabatic index, i.e., cj ¼ 3, for all the

species in the equation of state given by Eq. (3). Since we

deal with a one-dimensional problem, the particles have one

degree of freedom along the wave propagation direction and

hence we choose c¼ 3 for both species.24,34

In the simulation, the spatial derivatives of the quantities

in Eqs. (1)–(4) are computed using the finite difference

scheme, which is accurate to the fourth order41,42

@Fh

@x
¼ 8ðFhþ1 � Fh�1Þ � Fhþ2 þ Fh�2

12Dx
; (5)

where Dx is grid spacing; and Fh represent a physical quantity

defined at grid “h”. We integrate the Eqs. (1)–(3) in time with

time step Dt by the leap-frog method,42 which is accurate to

the second order. The leap-frog method gives rise to a grid sep-

aration numerical instability. To eliminate small wavelength

modes linked with such numerical instability, a compensated

filter42 with the following form is used in the simulation:

F�h ¼
5

8
Fh þ

1

4
ðFh�1 þ Fhþ1Þ �

1

16
ðFh�2 þ Fhþ2Þ; (6)

where F�h is a filtered physical quantity F at grid “h”.

We perform the fluid simulations in a one-dimensional

system with the periodic boundary conditions. For all simula-

tion runs, we assume an artificial electron-to-ion mass ratio

le ¼ 0:01 and electron-to-ion temperature ratio

Tr ¼ Te=Ti ¼ 5. The flow velocities of electrons and ions at

t¼ 0 are assumed to be zero, i.e., veðxÞ ¼ viðxÞ ¼ 0. The

background electron and ion densities are set to one, i.e.,

ne0 ¼ ni0 ¼ 1. These background densities are superimposed

by a localized perturbation of the following form:

dn ¼ Dn sech2 x� xc

l0

� �
: (7)

In the above equation, Dn and l0 give the amplitude and

width of the superimposed density perturbation. Here, xc is

the center of the simulation system. Thus, the perturbed

densities njðxÞ ¼ nj0 þ dn take the following form at t¼ 0

njðxÞ ¼ nj0 þ Dn sech2 x� xc

l0

� �
: (8)

The initial density perturbation (IDP) dn considered here has

a similar form as the analytical solution of the KdV equa-

tion.27 We also compute the strength of IDP using the fol-

lowing equation:

S ¼
ðLx

0

dn dx: (9)

Here, Lx is the length of the simulation system. We divide

the IDP in two categories based on whether the wavelengths

linked with them are larger or smaller as compared to the

electron Debye length. We have performed simulation runs

for (a) short wavelength (k2k2
de > 1) and (b) long wavelength

(k2k2
de < 1) IDPs. Here, k and kde are the wave number and

the electron Debye length, respectively. For short and long

wavelength IDPs, we use l0 ¼ 10;Dn ¼ 0:2, 0.5, 1 and

l0¼ 60, 100, Dn ¼ 0:2; 1, respectively. Other parameters of

the simulation runs under these categories are provided in

Table I. Examples of short (l0 ¼ 10;Dn ¼ 0:5) and long

(l0 ¼ 100;Dn ¼ 1) wavelength IDPs are shown in Figure 1

along with their Fourier spectra in k-space. The vertical

dashed line shown in Figure 1(a) represents k2k2
de ¼ 1 (gives

k ¼ 0:45k�1
di ), which categorizes the IDPs in short and

long wavelength domains for Tr ¼ 5. It is noted that the

short(long) wavelength IDP takes larger(smaller) k-space.

III. SIMULATION RESULTS

A. Short wavelength density perturbation (k 2k2
de>1)

Here, we discuss the generation and evolution of IA

solitary structures when the short wavelength type IDP is

TABLE I. Simulation parameters for different run.

Dx Dt Lx l0 Dn

Run [kdi] [x�1
pi ] [kdi] [kdi] [n0]

1 0.4 0.001 3e105 10 0.2

2 0.4 0.001 3e105 10 0.5

3 0.4 0.001 3e105 10 1.0

4 0.4 0.001 3e105 60 0.2

5 0.4 0.001 4e105 100 0.2

6 0.4 0.001 3e105 60 1.0

7 0.4 0.001 4e105 100 1.0
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introduced to the background electron and ion densities.

Under this category, we perform three simulation runs

for perturbation strengths S¼ 4 (Run-1), 10 (Run-2), and 20

(Run-3). Some of the steps during formation and evolution

of IA pulses are demonstrated in Figure 2. Perturbed den-

sities nj(x) at xpit ¼ 0 are shown in Figure 2(a). This density

perturbation evolves into two unstable IA pulses and two

Langmuir wave packets at xpit ¼ t1, which is depicted in

Figure 2(b). In this case, Langmuir wave packets propagate

with a group speed (Vg) greater than that of IA solitary pulses

and moves towards the boundaries of the simulation system.

The unstable IA pulses follow the Langmuir wave packets

and travel with a speed Vs. During the course of evolution,

IA oscillations are developed at the inner edge of these

unstable IA pulses as shown in Figure 2(c). Thus Langmuir

waves, IA pulses, and IA oscillations propagate with speeds

Vg, Vs, and Vs0, respectively, such that Vs0 < Vs < Vg.

Langmuir waves dissipate considerably with time by losing

their energy to the IA oscillations. At time xpit ¼ t3,

Langmuir wave packets, IA solitary pulses, and IA oscilla-

tions are distinct and reasonably isolated from each other,

which is shown in Figure 2(d). The IA solitary pulses do not

change their amplitudes, widths, and speeds after time

xpit ¼ t3, hence they are termed as IA solitons.

Under this category, we discuss the evolution of IA

pulses for l0 ¼ 10;Dn ¼ 0:5, and S¼ 10 (Run-2). We exam-

ine the evolution and propagation of different wave structures

through spatial and temporal evolution of their electrostatic

potentials, which is depicted in Figure 3. It should be noted

that we use a large system length (Lx ¼ 300 000kdi) for the

present simulation run and hence only the part of the system

from x ¼ �3500kdi to 3500kdi is shown in this Figure 3.

Here, x¼ 0 represents the center of the simulation system.

The horizontal dotted line shown in Figure 3 at xpit ¼ 10

corresponds to the time of formation of two unstable IA

pulses. After their formation, these IA pulses propagate

opposite to each other and are seen as two red bands. The

blue bands represent the propagation of IA oscillations. The

inset shown in Figure 3 clearly shows the propagation of

Langmuir wave with distinct wave structures. The speed

obtained from their propagation path indicates that these

packets propagate in a direction opposite to each other with

group velocity less than
ffiffiffi
3
p

Ce, where Ce ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
is the

FIG. 1. (a) Graphical representation of IDP dn for short wavelength

(k2k2
de > 1) case l0 ¼ 10;Dn ¼ 0:5 and long wavelength (k2k2

de < 1) case

l0 ¼ 100, Dn ¼ 1. (b) Fourier spectrum of these density perturbations in

k-space. The vertical dashed line corresponds to the limit k2k2
de ¼ 1, which

gives k ¼ 0:45k�1
di for Tr ¼ 5 and divides the perturbations in short and long

wavelength regimes.

FIG. 2. Schematic diagrams showing

some of the steps during formation and

evolution of IA pulses for the case of

short wavelength IDP.
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electron thermal speed. The presence of the IA and Langmuir

modes can be confirmed from dispersion diagrams. The

x�k diagrams obtained by Fourier transforming the electric

field in space and time for periods (a) xpit ¼ 0�20 and (b)

xpit ¼ 80�100 are shown in Figure 4. It is noted that the

energy linked with IDP flows into Langmuir and IA modes

developed in the system as diagnosed in Figure 4. The numer-

ical velocity (Dx=Dt) is higher than the phase velocities of

these normal modes in the system. The lower dispersion

curves are for IA modes, whereas the dispersion curves start-

ing at x=xpi � 10 correspond to the Langmuir modes and

their harmonics. The speed of the IA mode obtained from its

spatial and temporal variations and the speed of the

Langmuir mode obtained from its linear dispersion relation

(i.e.,
ffiffiffi
3
p

Te=me) are shown by dotted lines in Figure 4. It

should be noted that the Langmuir harmonics weaken at

later time.

After time xpit ¼ 4400, the Langmuir waves, IA

pulses, and the IA oscillations are well separated from each

other, and the properties of IA pulses are found to be

unchanged. In Figure 5, we show the snapshots of electron

and ion perturbed densities (ne, ni), electrostatic potential

(/), and electric field (E) associated with the IA pulses at

time xpit ¼ 4400 and xpit ¼ 5400 for Run-2. The densities,

electric field, and potential shown in Figure 5 are associated

with the Langmuir wave, IA soliton, and IA oscillations

that are propagating in positive x–direction. It is seen that

the electric field and the electrostatic potential associated

FIG. 3. Spatial and temporal evolution

of electrostatic potentials for l0 ¼ 10;
Dn ¼ 0:5 (Run-2). The upper dark blue

bands represent the propagation path

of IA oscillations. The dark red bands

correspond to IA pulses propagating

opposite to each other. The inset shows

Langmuir wave packet with distinct

wave structures.

FIG. 4. x� k dispersion diagrams during (a) xpit ¼ 0�20 and (b) xpit ¼ 80�100 for l0 ¼ 10, Dn ¼ 0:5 (Run-2). It shows presence of both Langmuir and IA

modes. The speed of Langmuir mode (IA mode) estimated from their standard linear dispersion equations (spatial temporal propagation) are shown with upper

(lower) slanted dashed lines. The electron plasma frequency is shown with horizontal black dotted line at xpe=xpi ¼ 10.
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with IA pulses are nearly the same during their propagation

from xpit ¼ 4400� 5400, which confirms the stability of

IA pulses, and thus we term them as IA solitons. In the sta-

bility region, the average amplitude h/mi, width hwi, and

speed hVsi of IA soliton and IA oscillation speed hVs0i are

found to be 0.53, 56.4, 4.32, and 4.20, respectively. The

simulation data for Run-1 and Run-3 are also analyzed, and

the average estimates of their properties are given in

Table II.

B. Long wavelength density perturbation (k 2k2
de<1)

Here, we discuss the generation and evolution of IA

pulses when the long wavelength type IDP is used to perturb

FIG. 5. Snapshots of (a) electron and ion

densities (b) electric field and (c) electro-

static potential associated with IA soliton

for xpit ¼ 4400 for Run-2. The same pa-

rameters are shown in (d)–(f) for

xpit ¼ 5400. Here, the profiles are asso-

ciated with the solitary pulse propagating

in positive x–direction.

TABLE II. IA soliton properties during their stability from fluid simulations along with corresponding estimates from nonlinear fluid theory.

Fluid simulation Nonlinear theory

S t1 � t2 h/mi hwi hVsi hVs0i /m w

Run [n0kdi] [x�1
pi ] Nsol S.No. [e=Ti] [kdi] [Ci] [Ci] [e=Ti] [kdi]

1 4 5900–6900 1 1 0.13 111.87 4.458 4.036 0.13 113.9

2 10 4900–5900 1 1 0.53 56.40 4.322 4.205 0.53 56.60

3 20 5700–6700 1 1 1.26 36.73 4.245 4.218 1.26 37.10

4 24 6100–7100 2 1 0.61 52.40 4.338 4.209 0.61 52.70

2 0.18 97.60 4.256 0.18 97.70

5 40 4700–5700 3 1 0.72 48.47 4.357 4.217 0.71 49.00

2 0.4 65.33 4.298 0.4 65.30

3 0.16 109.8 4.254 0.15 106.1

6 120 8300–9300 5 1 1.91 29.80 4.578 4.206 1.92 30.30

2 1.62 32.53 4.525 1.63 32.80

3 1.16 38.60 4.442 1.17 38.50

4 0.64 52.40 4.347 0.63 52.20

5 0.21 96.53 4.267 0.2 91.30

7 200 5800–6800 8 1 2.13 28.33 4.617 4.193 2.13 28.70

2 1.95 29.60 4.587 1.97 29.90

3 1.71 31.73 4.544 1.71 32.00

4 1.4 35.20 4.489 1.38 35.40

5 1.06 40.60 4.428 1.06 40.40

6 0.71 49.53 4.368 0.74 48.30

7 0.44 66.00 4.313 0.43 63.20

8 0.19 112.47 4.268 0.18 97.70
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the background electron and ion densities. It is seen that for

the long wavelength IDP, two chains of multiple solitons are

formed through a process of wave breaking. Some of the

time evolutionary characteristics of IA solitons are discussed

by schematic diagrams in Figure 6. The perturbed densities

of electron and ion njðxÞ at t¼ 0 for the long wavelength IDP

is shown in Figure 6(a). This density perturbation evolves

into two unstable IA solitary pulses and the Langmuir wave

packets as shown in Figure 6(b). These solitary pulses are

indistinguishable and propagate towards the opposite boun-

daries of the simulation system with the same speed. Both

Langmuir wave packets propagate with group velocities

greater than the speed of IA solitary pulses. During the

course of propagation of these unstable IA pulses, it is seen

that their amplitude and speed increases and the trailing

edges tend to steepen. As a result of this steepening process,

the IA solitary pulses acquire a critical amplitude, which is

shown in Figure 6(c). The amplitudes of IA pulse cannot

increase further and both solitary pulses collapse through the

wave breaking process that is shown in Figure 6(d). Once

initiated, this wave breaking process continues and two

chains of solitary pulses are generated in the simulation

system. A larger amplitude solitary pulse in the chains trav-

els with a greater speed while a smaller amplitude solitary

pulse propagates with a less speed. At later stage, these IA

solitary structures form distinct chain of stable solitons,

which maintain their properties for a long time. These stable

chains of IA solitons are shown in Figure 6(e) along with IA

oscillations, which are developed during the course of evolu-

tion and follow the smallest amplitude soliton in the chain.

Under this category, we perform four simulation runs

for perturbation strengths S¼ 24 (Run-4), 40 (Run-5), 120

(Run-6), and 200 (Run-7). Here, we discuss the Run-7 in

detail. The parameters considered for this run are

Lx ¼ 40 0000kdi, l0¼ 100, and Dn ¼ 1. Spatial and temporal

evolution of electrostatic potential associated with different

modes is illustrated in Figure 7. The horizontal dotted line at

xpit ¼ 90 indicates the time of formation of two unstable IA

pulses, whereas the horizontal dotted line at xpit ¼ 210 cor-

responds to the initiation of the wave breaking. It is seen that

number of red bands in Figure 7 start increasing after the ini-

tiation of wave breaking. This shows that the initially formed

unstable IA pulses break into multiple IA pulses, which are

observed as two chains of stable multiple IA solitons at later

time. The development of IA oscillations is also seen (blue

bands in Figure 7) at the inner edge of this solitary chain.

Each solitary chain formed in this run contains eight number

of solitons (Nsol ¼ 8). Figure 7 shows the spatio-temporal

evolution till xpit ¼ 800. The formation of unstable pulses

and their evolution into stable IA solitons is a long time pro-

cess; thus, we see only five IA solitary pulses in Figure 7.

The propagation of the Langmuir waves with distinct wave

structures is clearly visible in the inset of Figure 7. The

slanted dotted lines shown in Figure 7 represents the speedffiffiffi
3
p

Ce. Thus, it is found that the Langmuir wave packets trav-

els with a group velocity less than
ffiffiffi
3
p

Ce, which is in agree-

ment with the linear dispersion of the Langmuir wave.43

For Run-7, the dispersion diagrams obtained by Fourier

transforming the electric field in space and time for time

xpit ¼ 20�40;xpit ¼ 80�100, xpit ¼ 160�180, and xpit ¼
240 – 260 are, respectively, shown in Figures 8(a)–8(d). Figure

8(a) show the x� k diagram during early phase of evolution,

whereas Figure 8(b) display x� k plot after formation of two

unstable IA pulses. Similarly, Figures 8(c) and 8(d) illustrate

FIG. 6. Schematic diagrams illustrate

some of the steps during formation and

evolution of chains of multiple IA soli-

tons in case of long wavelength IDP.
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FIG. 7. Spatial and temporal evolution

of electrostatic potentials for l0 ¼ 100;
Dn ¼ 1 (Run-7). The upper dark blue

bands represent the propagation path of

IA oscillations. The red bands corre-

spond to chain of IA pulses propagating

opposite to each other. The inset shows

Langmuir wave packet with distinct

waves. The horizontal dotted lines at

xpit ¼ 90 and xpit ¼ 210 correspond to

formation of two unstable IA pulses and

initiation of wave breaking, respectively.

FIG. 8. x� k dispersion diagrams during (a) xpit ¼ 20�40, (b) xpit ¼ 80�100, (c) xpit ¼ 160�180, and (d) xpit ¼ 240�260 for the simulation Run-7. The

dispersion curves show IA mode. The slanted dotted lines represent the average speed hVsi of fastest IA soliton in the chain during their stability.
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dispersion diagrams during wave steepening and after wave

breaking, respectively. In these figures, the two dispersion

curves are linked with the IA mode. Although Langmuir dis-

persion curves are present at x=xpi ¼ 10, they are not visible

as we are focusing on the evolution of ion acoustic dispersion.

It is observed that the IA mode is associated with smaller val-

ues in k-space during the early phase of evolution. However,

the mode is found to be associated with the larger values in

k-space during the process of wave steepening and wave

breaking process, which indicates the development of short

wavelength structures in the system.

The speeds of solitons in the chain are greater than the

those of IA oscillations, Vs0. The solitary pulses formed in the

chain become distinct due to their difference in propagation

speeds and evolve into the chain of stable IA solitons at time

xpit ¼ 5800. The speed, amplitude, and width of each IA soli-

ton of the chain in their stability region are estimated and given

in Table II. To demonstrate the stability of the IA solitons, we

have shown snapshots of the soliton chain propagating in posi-

tive x–direction at xpit ¼ 5800 and xpit ¼ 6800 in Figure 9.

Figures 9(a)–9(c), respectively, show the electron and ion den-

sities, electric field, and electrostatic potential of the solitary

chain at time xpit ¼ 5800. Likewise, the same parameters at

xpit ¼ 6800 are shown in Figures 9(d)–9(f). The snapshots at

two different times show that the amplitude of densities, elec-

tric field, and the electrostatic potential associated with each

solitons in the solitary chain are nearly the same, which reveals

the stability of all the solitons in the solitary chain.

IV. NONLINEAR FLUID THEORY OF IA SOLITONS

The Sagdeev pseudopotential method30 is widely used

to study arbitrary amplitude solitary waves analytically in a

stationary reference frame. Here, we develop the nonlinear

fluid theory of IA solitons for electron-ion plasma using the

Sagdeev pseudopotential technique to compare it with fluid

simulations.

We use Eqs. (1)–(4) and assume that all variables are

functions of a single variable, n ¼ ðx�MtÞ. We transform

these equations to a stationary frame moving with the phase

velocity of the solitary wave, Vs. Here, M ¼ Vs=Ci is the

Mach number, which is a measure of a normalized velocity

of an IA soliton. Then, solving for perturbed densities, put-

ting these expressions in the Poisson equation, and assuming

appropriate boundary conditions for the localized disturban-

ces along with the conditions that / ¼ 0 and d/=dn ¼ 0 at

n! 61, we obtain the following energy integral:34,35

1

2

@/
@n

� �2

þ wð/;MÞ ¼ 0; (10)

where

wð/;MÞ¼lene0 M2� Mffiffiffi
2
p B1=2

e

� �
þne0Trf1�2

ffiffiffi
2
p

M3B�3=2
e g

þni0 M2� Mffiffiffi
2
p B

1=2
i

� �
þni0f1�2

ffiffiffi
2
p

M3B
�3=2
i g

(11)

is the pseudopotential, also known as the Sagdeev potential.

Here,

Be ¼ Ae6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

e �
12TrM

2

le

s
; Bi ¼ Ai6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

i � 12M2

q
;

Ae ¼ M2 þ 3Tr

le

þ 2/
le

; Ai ¼ M2 þ 3� 2/;

le ¼
me

mi
; Tr ¼

Te

Ti
:

FIG. 9. Snapshots of (a) electron and ion

densities (b) electric field and (c) electro-

static potential associated with chains of

IA solitons for xpit ¼ 5800 for Run-7.

The same parameters are shown in

(d)–(f) for xpit ¼ 6800. Here, the pro-

files are associated with the solitons

propagating in positive x–direction.
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Equation (10) describes the motion of a pseudo particle of a

unit mass in a pseudo potential w, where / and n play the

role of displacement x from the equilibrium and time t,
respectively. Equation (10) yields solitary wave solutions

when the Sagdeev potential satisfies the following

conditions:

wð/;MÞ ¼ 0; dwð/;MÞ=d/ ¼ 0;

d2wð/;MÞ=d/2 < 0 at / ¼ 0;

wð/;MÞ ¼ 0 at / ¼ /max; and

wð/;MÞ < 0 for 0 < j/j < j/maxj:

It is clear from Eq. (11) that wð/;MÞ and its first-order deriv-

ative with respect to / vanishes at /¼ 0, thus Eq. (11)

always satisfies the first two conditions mentioned above.

The third condition, i.e., d2wð/;MÞ=d/2 < 0 at / ¼ 0, is

fulfilled only if M > M0, where M0 satisfy the equation

f ðM0Þ �
ne0

le M2
0 �

3Tr

le

� �þ ni0

½M2
0 � 3� ¼ 0: (12)

For each Tr, the numerical solution of Eq. (12) in general

gives two critical Mach numbers 6M0, which indicate the

presence of two IA solitons with equal and opposite speeds.

M0 is the critical mach number and soliton solutions exist

only for M > M0. For Tr¼ 5, le ¼ 0:01, and ne0 ¼ ni0 ¼ 1,

we get M0 ¼ 64:22. Thus, for particular M > M0, soliton

solutions can be obtained by solving Eq. (10) numerically.

V. COMPARISON: FLUID SIMULATION VS.
NONLINEAR FLUID THEORY

To compare the simulation results with the nonlinear

fluid theory, we summarize the properties of IA solitons in

the stability region (i.e., xpit ¼ t1 to t2) for different

simulation runs. We estimate the averages of physical quan-

tities, such as amplitude (h/mi), width (hwi), and speed

(hVsi) of each soliton propagating in positive x–direction,

and these details are given in Table II. The standard devia-

tions of the average speed and amplitude of the solitons are-

�0.2% and 0.4%, respectively. This implies that the formed

solitons are considerably stable during their propagation

from xpit ¼ t1 to t2. It should be noted that for a short (long)

wavelength IDP, two identical single solitons (chains of mul-

tiple solitons) are formed. The number of solitons (Nsol)

established in each simulation run, which are travelling in

positive x–direction, is also provided in Table II along with

the speed of IA oscillations following them. Therefore, for

each run, the total number of solitons formed in the simula-

tion system is 2 Nsol.

The number of solitons formed in the solitary chains is

found to increase with the strength of the initial density per-

turbation. For perturbation strengths S¼ 24, 40, 120, and

200, the numbers of solitons formed in each solitary chain

are, respectively, 2, 3, 5, and 8. The large perturbation

strength produces large amplitude solitons with greater

speeds as compared to those IA solitons that are formed with

small perturbation strengths. It is observed that the speed of

IA oscillations, Vs0 obtained from the simulation is less than

or equal to the critical mach number, M0 computed from the

nonlinear fluid theory. Also the speeds of all IA solitons are

found to be greater than the speed of IA oscillations, i.e.,

Vs0 � Vs. We use the average soliton speed hVsi as an input

to the nonlinear fluid model and solve Eq. (10) numerically

to obtain a soliton profile. The amplitudes and widths of

these soliton profiles are given in Table II.

The h/mi and hwi estimated from the simulations are

plotted as functions of hVsi along with their corresponding

values of /m and w incurred from nonlinear fluid theory in

Fig. 10. It is seen that the properties of stable solitons

FIG. 10. Plots of average amplitude and

width as a function of speed for IA soli-

tons established in the simulation system

during their stability along with the am-

plitude and width obtained from nonlin-

ear fluid theory for respective speeds.
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established in the fluid simulations for both long and short

wavelength IDPs are in good agreement with those provided

by the nonlinear fluid theory. Thus, our fluid simulations val-

idate the nonlinear fluid theory and confirm the stability of

soliton solutions provided by this theory. It is noted that for

hVsi ¼ 4:27, the maximum amplitude and width obtained

from the theory deviate considerably from those estimated

from the simulations. This solitary pulse is the smallest am-

plitude pulse (soliton number 8) in the solitary chain of Run-

7. During xpit ¼ 5800�6800, it is seen that this pulse is still

evolving and needs more time to acquire stability. However,

we do not have simulation data after xpit ¼ 6800 to check

its stability.

VI. WAVE BREAKING OF UNSTABLE IA SOLITARY
PULSES

Generally, in fluid dynamics, it is observed that a breaking

wave approaches a critical amplitude before the initiation of

wave breaking. When the wave amplitude tends to approach

the critical amplitude (or wave breaking amplitude), the wave

steepens, and deformation occurs at the wave crest either at the

leading or trailing edge. This wave steepening results in forma-

tion of short wavelength pulses. The similar mechanism is

observed in our fluid simulations during the generation of IA

solitons in case of a long wavelength type IDP.

We compute the electrostatic energy UE ¼ E2=2Lx and

kinetic energy of the electron KEe ¼ nemev2
e=2Lx per unit

system length for all simulation runs. Figures 11(a)–11(d)

show UE and KEe=2 as functions of time for the simulation

runs with long wavelength IDP Run-4, Run-5, Run-6, and

Run-7, respectively. At the early phase of evolution, the

electrostatic energy increases and it is greater than half of

the kinetic energy of the electrons. At the later time, this

electrostatic energy decreases and remains lower than

KEe=2. However, the electrostatic energy again enhances

significantly and exceeds KEe=2. This scenario is observed

only for long wavelength type density perturbations, which

is linked with the wave breaking process. The electrostatic

potential profile of IA solitary pulses traveling in positive

x–direction corresponding to the time close to UE ¼ KEe=2

are shown in Figures 11(e)–11(h) for respective simulation

runs. It is noticed that the wave breaking process initiates

close to the time when UE exceeds KEe=2. Also the ampli-

tudes of collapsed solitary structures are found to be larger

for S¼ 200 (Run-7) and smaller for S¼ 24 (Run-4). This

implies that the wave breaking amplitude is determined

by the strength of IDP. For l0 ¼ 100;Dn ¼ 1 (Run-7) and

l0 ¼ 60;Dn ¼ 1 (Run-6), the UE exceeds KEe=2 close to

xpit ¼ 210 and xpit ¼ 120, respectively. Similarly, for

l0 ¼ 100;Dn ¼ 0:2 (Run-5) and l0 ¼ 60;Dn ¼ 0:2 (Run-4),

the UE exceeds KEe=2 close to xpit ¼ 990 and xpit ¼ 420,

respectively. It indicates that the wave breaking occurs at a

later time for a greater l0 while Dn is kept fixed, whereas it

takes place at an earlier time for larger Dn when l0 is kept

fixed. Thus, we conclude here that the wave breaking ampli-

tude and the time of initiation of the wave breaking are both

dependent on parameters, l0 and Dn of the long wavelength

type IDP.

Figures 12(a)–12(c), respectively, show plots of UE and

KEe=2 for Run-1, Run-2, and Run-3 which falls under the

short wavelength type density perturbation. We have not

observed the wave breaking process during the formation of

IA solitons for these cases. Moreover, the electrostatic

energy always remains greater than KEe=2. The time evolu-

tions of the electrostatic energy and the kinetic energy of

FIG. 11. Time evolution of electrostatic

energy UE and half of kinetic energy of

electrons KEe=2 for the long wavelength

IDP simulations (a) Run-4, (b) Run-5,

(c) Run-6, and (d) Run-7. The profile of

electrostatic potential (propagating in

positive x–direction) at time close to

UE ¼ KEe=2 for respective simulation

runs (e) Run-4, xpit ¼ 420, (f) Run-5,

xpit ¼ 990 (g) Run-6, xpit ¼ 120, and

(h) Run-7, xpit ¼ 220.
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electrons are different as compared to the cases of long

wavelength type density perturbation. This confirms that the

condition of UE > KEe=2 is observed during evolution of IA

solitary pulses generated only with the long wavelength type

density perturbation.

Generally, any perturbed system evolves with time and

try to attain stability. In our fluid simulations for both long

wavelength and short wavelength IDPs, stable IA solitons

are formed in the system after a long-time nonlinear evolu-

tion. The solitons are stable solitary structures that propagate

with constant speeds when the dispersive effects balance the

nonlinearity in the medium. The linear dispersion relation

for IA mode is

x
k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ceTe

mið1þ k2k2
deÞ
þ ciTi

mi

s
: (13)

The equation above suggests that the phase speed of IA

mode is dependent on wave numbers for k2k2
de 	 1. In such

cases, the stable soliton solutions are possible as the disper-

sive effects are present in the medium to balance the nonlin-

ear effects. In view of this, the short wavelength IDP has a

strong dispersive effect, whereas long wavelength IDP has a

weak dispersive effect. In the latter case, the initially formed

IA solitary pulses break into the short wavelength structures.

This wave breaking process introduces sufficient dispersive

effects in the medium to balance the nonlinearity and the

chains of stable IA solitons are formed.

VII. DISCUSSION AND CONCLUSIONS

We have performed one-dimensional fluid simulations

of the IA solitary waves propagating parallel to the magnetic

field in an electron-ion plasma by considering a large system

length. We find that the IDP in the plasma evolves into IA

solitons, IA oscillations, and Langmuir waves. This

evolution process is found to be depend on the wavelength

of the IDP. The short wavelength k2k2
de > 1 type IDP

evolves into two identical oppositely propagating single soli-

tons, whereas the long wavelength k2k2
de < 1 type IDP

evolves into two identical oppositely propagating chains of

multiple solitons. A similar phenomenon of formation of sol-

itons is observed experimentally in the University of

California at Los Angeles double plasma device,44 in the

fluid simulation,45 and also in a numerical simulation of the

KdV equation using a finite difference approach.28

It is seen that the wave breaking process plays an impor-

tant role in the formation of chains of multiple IA solitons

and it is found to take place only with the long wavelength

(k2k2
de < 1) type IDPs. Also it is observed that the number of

solitons formed in the solitary chain increases with the

increasing strength S of the IDP. These IA solitons are simi-

lar to those obtained from the KdV equation with respect to

their shape and velocity of the soliton.28

It is known that propagation of the nonlinear plasma

waves has a fundamental limitation given by the wave break-

ing threshold. In general, the solitary pulse generated in a

fluid tries to acquire the maximum amplitude before they

start to collapse through the wave breaking process. In the

past studies, it is reported that the longitudinal wave break-

ing in a cold one-dimensional plasma occurs when elements

of the plasma electron fluid that started out in different

positions overtake each other while moving back and forth

during the passage of the wave.46 This overtaking happens

when the peak fluid velocity equals the phase speed of the

plasma wave. In a warm plasma, the thermal effects modify

the wave breaking amplitude.47,48 In this context, the results

presented here indicate that the wave breaking amplitude is

determined by the strength of the IDP. The greater the per-

turbation strength is, the larger the wave breaking amplitude

of the IA solitary wave is in the warm plasma. Also, the time

at which the wave breaking process initiates is found to be

FIG. 12. Time evolution of electrostatic

energy UE and half of kinetic energy of

electrons KEe=2 for short wavelength

IDP simulations (a) Run-1, (b) Run-2,

and (c) Run-3.

062103-11 Kakad, Omura, and Kakad Phys. Plasmas 20, 062103 (2013)

Downloaded 22 Jul 2013 to 14.139.123.135. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions



dependent on the perturbation parameters Dn and l0. For a

fixed perturbation width (l0), the wave breaking occurs ear-

lier for larger density perturbations; while for the fixed den-

sity perturbations, it occurs at earlier time for smaller widths.

This indicates that the time of occurrence of the wave break-

ing depends on characteristics of the IDP. It is noticed that

electrostatic energy and kinetic energy of the electron fluid

satisfy the condition (UE > KEe=2) close to the time of ini-

tiation of the wave breaking.

The nonlinear fluid theory for IA solitons is developed

by employing the Sagdeev pseudo potential approach and

the results are compared with the simulations. This theory

predicts two identical IA solitons with Mach numbers 6M,

which implies that these solitons propagate in opposite direc-

tions with the same speed (jMj), which is consistent with the

present fluid simulations.

The speeds of IA solitons obtained from the fluid simu-

lations are found to be greater than the critical Mach (M0)

number estimated from the nonlinear fluid theory. This is in

accordance with the nonlinear fluid theory that supports the

existence of IA soliton solutions for Mach numbers greater

than M0. The average amplitude and width of IA solitons

computed from the simulations are in good agreement with

those obtained from the nonlinear fluid theory.

The fluid simulations presented in this paper are the first

ensuring the result from the general fluid theory, which has

been extensively applied in interpretations of the solitary

wave observations in terms of electron and IA solitary waves

in space and laboratory plasmas.

It is noted that the Sagdeev pseudo potential method

predicts only the stationary IA solitary solutions, where the

soliton conditions are accomplished. It does not provide in-

formation about the transition process through which the sta-

ble IA solitons are generated in the electron-ion plasma. The

present simulation uses the standard initial perturbation in

equilibrium electron and ion densities, which evolves into IA

solitons in the plasma. Such localized perturbations are pro-

duced in a laboratory plasma by very high laser powers and

are known to be responsible for the generation of solitary

waves in plasmas.49 In space, such density perturbations can

originate in the Earth’s magnetospheric regions, such as bow

shock, magnetopause, and magnetosheath driven by solar

wind variations.50 Extension of the present one-dimensional

simulation to two- or three-dimensional models in magne-

tized plasmas is left as future studies.
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