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1. Introduction
A magnetotelluric survey was undertaken across the Singhbhum granite
batholith primarily to characterise the electrical structure of the Singhbhum
Orissa Iron ore Archaean craton. Metronix MMS02E MT equipment having
operating frequency range of 4 Hz to 2.44 x 10~ Hz was used. Two
dimensional model of the subsurface based on one dimensional and two
dimensional inversion are presented to show the common features.

1D inversion was done following the approaches of Bachus and Gilbert
(1968, 1970), Ridge Regression (Hoerl and Kennard, 1970a, 1970b;
Marquardt, 1963; Inman, 1975) Simulated Annealing (Kirkpatrik et al, 1983
and Sen and Stoffa, 1991) and Schmucker’s p* — g* algorithm. 2D inversion
was done using the algorithm of Smith and Booker (1991). Electrical model
of the subsurface below the Singhbhum granite batholith is presented.

2. Geology of the Area

The Indian subcontinent is subdivided into' three proto continents, viz.
Singhbhum, Dharwar and Aravalli. These are Archaean and Proterozoic
cratons and carry the signature of some of the oldest phases of the crustal
evolution. Since the present investigation is restricted to the Singhbhum
area only, a brief description of the geology of the area is presented (Saha
et al, 1984; Saha et al, 1988; Saha, 1994)

The Singhbhum Orissa iron ore craton (Latitude 20°45" to 22°45’,
Longitude 84°30" to 86°45") is bounded to the north and northwest by the
200 km long curved copper belt thrust zone (CBT) and to the south by the
Sukinda thrust, which has a nearly east-west strike (Figure 1). The major
component of the craton is the Singhbhum granite batholith (8000 km?).
The iron ore craton is surrounded to the east and north east by the relatively
high grade Satpura belt and to the south by the Eastern Ghat belt. The
oldest rock within the craton is the older metamorphic gneiss (OMG),
which consists of medium grade pelitic schists, para and ortho amphibolite
and calc schists. OMG covers an area of about 200 km? to the west of
Champua. These rocks were intruded by biotite, tonalite gneiss grading to
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trondhjemite (900 sq km). The rest of the batholith is made up of at least
twelve magmatic bodies of biotite granodiorite granite which evolved in
two distinct phases (SBGA and SBGB). Recent geochronological studies
suggest that SBGA and SBGB are of different age (3.3Ga and 3.1Ga
respectively). SBGA rocks are relatively potash poor granodiorite—
trondhjemite while SBGB are granodiorite grading to adamellite granite.
SBGB occupies nearly two third of the total surface area of the Singhbhum

granite batholith (Figure 1). SBGA and SBGB granites have distinctly
different physical properties.
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Fig. 1 Geological map of the study arearand magnetotelluric observation sites.
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Older metamorphic tonalite trondhjemite (OMTG) mineralogically
comprises of plagioclase and quartz with accessary biotite and hornblende.
They show rather a small range in their chemical composition. OMG and
OMTG are about 3.4Ga old and are the oldest group of rocks which form
the Singhbhum protocontinent.

3. Field Work

A series of single site magnetotelluric soundings were undertaken across
the Singhbhum granite batholith from Bangriposi to Keonjhar. Observation
points are shows in Fig. 2. Separation between the field sites ranged between
5 and 15 km. The MMSO02E MT system (Metronix, Germany) was used for
the field observations and has a frequency range of 4.0 to 1/4096 Hz.
Induction coil magnetometer and silver-silver chloride non polarisable
electrodes were used for measuring the magnetic and electric fields. Signals
up to 628 sec could be retrieved from the overnight continuous observation
of 12 to 24 hrs. These signals sense structure upto depth of about 100 km,
since they pass through the highly resistive granite batholith. Mono and
bivariate choherency threshold of 0.8 was set as the criteria for acceptance
or rejection of signals. Rejection of signals due to weak geomagnetic activity
was about 600%. North-south and east-west electric field measuring dipole
length varied between 60 and 100 meters. Metronix softwares were used
for processing of the MT data.

4. Results and Discussion

Figures 3 to 10 are apparent resistivities (p%-, and p, ) and phases (¢xy and
¢yx) and the 1D inverted models with their uncertainty levels using p* — g*
algorithm of Schmucker for the unrotated and rotated values for the stations
Tangavilla, Kadvani, Bubuyajora, Nuvagaon, Dudura, Dari, Badposi and
Turumunga. Here northsouth and eastwest coﬁlponents are, respectively, the
X and Y components. The apparent resistivities and phases are, respectively,
given by
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In the dead band (near 1 to 10 Hz) the signals failed to cross the coherency

threshold. Therefore, there are some gaps both in the apparent resistivity
2
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and phase data.
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Four layer earth models are obtained for all the models to show the order
of resistivities of the upper crust, lower crust, upper mantle lithosphere,
upper mantle asthenosphere.
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Fig. 3 Magnetotelluric apparent resistivity and phase curves and their inverted
section for the Turumunga MT station. a, b shows the unrotated p,,, and
Payy apparent resistivity and phase field curves and ¢, d show their 1D
inverted sections. e, f shows the rotated p,,, and p,,, apparent resistivity
and phase field curves and g, h show their 1D inverted sections.
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Fig. 4 Magnetotelluric apparent resistivity and phase curves and their inverted
section for the Badposi MT station.

Unrotated values are the MT tensors obtained for the geographic north-
south and east-west orientation of the electric and magnetic fields. Rotated
values are obtained after mathematical rotation of the MT impedance tensors
such that at optimum rotation angle, the sum of the squares of the diagonal
elements of the tensor
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i.e., Zx + Z{y becomes minimum and Z43 + Z;2 maximum (Swift, 1969)
and is known as Swift rotation angle (Vozoff, 1972). Z’ are the rotated
impedance tensors. Eggers (1982) described these rotated and unrotated
tensors in detail. Since the trace of the elements of the complex impedance
tensors are elliptic and traces of all the elements are of equal size and
ellipticity, it is better to work with the maximum value of the impedance
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Fig. 5 Magnetotelluric apparent resistivity and phase curves and their inverted
section for the Dari MT station.
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Fig. 6 Magnetotelluric apparent resistivity and phase curves and their inverted
section for the Tangavilla MT station.

tensor if we do not go for rotation invariant tensors. That is why optimum
rotation is used to have the E and H polarisation values for interpretation.
This concept of rotation works nicely for two dimensional problem. For
three dimensional earth, this optimum rotation lose its significance to a
great extent because Zyy + Zy, do not tend towards zero after mathematical
rotation.

Figure 11 shows the plots of the Swift Skew
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sections for the Dudura MT station.
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for all the frequencies. The Swift Skew plots indicates that the structure is
mainly two-and three dimensional with several patches of high skews.
There are some sites where the skew is low. Along the geological contacts
(contacts of SBGA and SBGB, contacts of the Mayurbhanj and Singhbhum
granite phase-III i.e., SBGB) skewness plot shows a higher trend. Figures
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12 and 13 show the apparent resistivities p,,, and p,, plotted along the

profile for different periods. At contacts, p,,, and p,,, separates out. Figure
14 shows the TE apparent resistivity and phase pseudosection. Major contacts
are revealed from this figure. Phase pseudosection shows that it is not the
case for the static shift.
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Fig. 8 Magnetotelluric apparent resistivity and phase curves and their inverted
sections for the Nuvagaon MT station.

Since the skewness for the Tangavilla station is very low, we tentatively
assumed the subsurface structure to be one dimensional. We inverted the
TE mode data of this site by Bachus-Gilbert (1968, 1970); Ridge Regression
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(Inman, 1975); Simulated Annealing (Kirkpatrik et al, 1983 and Sen and
Stoffa, 1991) and Schmucker’s p* — g* algorithm.
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Fig. 9 Magnetotelluric apparent resistivity and phase curves and their inverted
sections for the Bubiyajora MT station.

Figures 15 and 16 show the flow charts for the Ridge regression and
Bachus-Gilbert inversion. Roy and Routh (1994) have discussed about the
procedure adopted for writing the Simulated Annealing algorithm.

Figure 17 shows the apparent resistivity data and initial choice of the
model parameters, the Bachus-Gilbert inverted resistivity values, B-G spread
function and the B-G averaging kernels for the real field data. Figure 15
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shows the depth upto which the MT data could see from the surface. Beyond
that depth the B-G spread function starts increasing rapidly. It is also reflected
in Fig. 17d which shows how the averaging kernel is losing its deltaness
criteria rapidly with depth and it can even be bimodal.
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Fig. 10 Magnetotelluric apparent resistivity and phase curves and their inverted
sections for the Kadvani MT station.

Figure 18 shows the 1D inverted models obtained by the four different
inversion approaches mentioned above. Lower conducting crust is reflected
and the depth of the electrical lithosphere boundary at a depth of 60 km and
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Fig. 14 TE apparent resistivity (a) and phase (b) pseudosection across the

Singhbhum granite batholith showing the location of the major
geological contacts.

Tangabila MT site. Figure 19 shows the apparent resistivity and apparent
phase plots for the sites Tangabila, Badposi, Kadambeda and Bubuyajora.
Although the apparent resistivity plots shows a frequency independent vertical
shift but the phase curves rules out the case for a static shift (Jones, 1988).
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Figure 20 shows the 2D section of the Singhbhum granite batholith
based on the 1D inverted data (Model-A). The structure below the Singhbhum
granite batholith is broadly a four layer structure. Granite and granodioritic
upper crust extends upto 10 to 15 km from the surface. It is underlain by
a conducting lower crust of about 10 to 20 km thickness. The upper most
mantle (about 25 km thick) lies below the conducting lower crust. Below
the upper most mantle lies the conducting asthenosphere.
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Fig. 15 Flow chart for the weighted ridge regression algorithm.

Park (1983, 1985) mentioned that 1D inverted MT data in the vicinity
of the 3D structure will show unusually increase the electrical conductivity
of the lower crust. Therefore, these enhanced conductivities may be due to

the defects in the artifacts.

“Rapid Relaxation Inversion” (minimum structure algorithm) is used for
inverting the TE and TM mode apparent resistivity and phase data. Figure
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Fig. 16 Flow chart for the Bachus-Gilbert inversion approach.

21 shows 2D inverted models for TE mode (Fig. 21b, ¢, d), TM (Fig. 21e,
f, g) and TEM mode (Fig. 21h, i, j) data. It is observed that all the 2D section
for TE, TM and TEM modes are not approximately similar. It indicates that
the structure is basically three dimensional.
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Fig. 18 Resistivity depth section for the Tangavilla MT station using:
(i) Schmucker’s p* — p* algorithm, (ii) Weighted ridge regression,
(iii) Bachus-Gilbert approach and (iv) Simulated annealing.

Figures 20 and 21 reveal following three important features:

1. Thinning of the lithosphere and rising of the mantle material near
the station Nuvagaon, which is also there in the section obtained by
1D inversion. Features are sharper in the 2D inverted model.

2. Model-B shows that SBGA i.e., Singhbhum granite phase II (3300
my) is much more resistive and more deep rooted than the SBGB,
the Singhbhum granite phase III (3140 my).

3. Lower crustal conductor, which was so prominent is the model-A
(Figure 20) appeared only in small patches in model-B (Figure 21)

4. Depth of the electrical lithosphere below Keonjhar is about 80 km
in model-A and 130 km in model-B. Depth of the lighosphere below
Bangriposi is around 60 km in model A and 70 km in model B.
Depth of mantle plume is around 45 to 50 km in both the models.

4.1 Singhbhum Granites SBGA and SBGB

The depth of the Singhbhum granite Phase II ¢SBG-A) is about 22 km deep
and its bulk resistivity is of the order of 18000 Q-m and above. SBGB is
about 3 to 4 km deep covering a large area and its resistivity is of the order
of 3500 to 7000 Q-m. '
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Fig. 19 TE apparent resistivity (a) and phase(b) curves for Tangabila, Badposi,
Bubiyajora and Nuvagaon stations.

Thus, from magnetotelluric modelling it appears that SBGA and SBGB
are two granite bodies originated from two different parent magma (Saha,
1994). Densities of SBGA and SBGB are, respectively, 2.63 and 2.68 gm/cc
(Verma and Mukhopadhyay, 1989). Many geologist believe that SBGA and
SBGB actually stand for one granite body. However, geochronology (Bakshi
et al, 1987), gravity survey (Verma and Mukhopadhyay, 1989) MT survey
and DC resistivity survey (Roy et al, 1993; Roy, 1996) and trace element
geochemistry indicates (Saha et al, 1968 and Saha et al, 1984) the existence
of two separate granite bodies.

4.2 Mantle Plume

Significant thinning down of the lithosphere and rising of the mantle material
below the station Nuvagaon, is apparent both in Model-A and Model-B.
Features are sharper in Model-B (Figure 21). It may be a mantle plume.
Simlipal volcanics and several dolerite dyke swarms exist very near to this
plume type structure. Longitudes of the Dhanjori volcanics, Simlipal volcanics
and Sukinda ultramafics are more or less along the same longitude and
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2D MAGNETOTELLURIC MODEL ACROSS SINGHBHUM
GRANITE BATHOLITH

STATION NO. —= 1 2 3 L 5 6 7 B 910 MN MAX
: OO 1R (a)  7.16 5.76 X 10° (ohm-m)
2 s (b)  453x10%  4.79 x10“ (ohm-m)
(c) 3452 74.23  (degree )
td) 2.47x10? 1.27x10°5 (ohm-m)
g 80 (e) 1.99x102  5.79x10% (ohm-m)
:; (f) £5.25 66.73 (degree )
S 100 (g)  7.09x10"  2.67x10° (ohm-m)
(h)  6.86x10' 3.44%10% (ohm-m)
(i) 40.42 71,28 (degree)

200

MODELS

DEPTH, km

MiN MAX

Fig. 21 TE, TM and joint TE and TM mode 2D section and apparent resistivity
and phase pseudosections obtained based on 2D rapid relaxation inversion
algorithm (RRI) of Smith and Booker (1991).

right above the plume head. Banerjee and Ghosh (1994) have proposed the
plume type of structure for Simplipal complex. Their conceptual geological
model is roughly matching with the subsurface electrical conductivity model
below the Singhbhum granite batholith. Figure 22 shows Bouguer gravity
anomaly of the Singhbhum area, prepared by Verma and Mukhopadhyay
(1989). It clearly shows the relatively high gravity over Dhanjori, Simplipal
volcanics and Sukinda thrust i.e., over the mantle plume.

Possible existence of a mantle plume below the Singhbhum granite
batholith is a new concept. Simplipal and Dhanjori volcanics and Sukinda
ultramafics are Proterozoic events. It seems the plume existed below the
Archaean craton throughout the geological time. To establish this concept,
extensive heat flow survey, deep -seismic sounding and array type MT
survey for 3D modelling and inversion should start. Elevation difference
between the plume head and base of the lithosphere should be studied in
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perspective of the isostatic compensation over the geological time period.
Since the geological and geophysical work converged towards the mantle
plume issue. This problem must be given further attention.

4.3 Asthenospheric Temperature from MT

An attempt was made to estimate the temperature of the asthenosphere
approximately based on the available high pressure temperatue experimental
electrical conductivity data. High pressure and temperature electrical
conductivity data for the crust mantle silicates are taken from the following
papers' Bradley et al. (1964), Chanishvilli et al. (1982), Constable and
Duba (1990), Constable et al. (1992), Duba et al. (1973) Duba et al. (1974),
Duba (1976), Duba and Shankland (1982), Shankland (1982), Duba and
Nicholls (1973), Dvorak (1973), Kobayashi and Maruyama (1971), Kariya
and Shankland (1983), Lastovickova (1975), Lastovickova and Kropacek
(1978), Lastovickova (1979), Lastovickova (1981), Lastovickova et al. (1987),
Mackwell and Kohlstedt (1990), Olthoeft (1977), Omura et al. (1989), Rai
and Manghnani (1978), Schock et al. (1989), Shankland and Duba (1987),
Shankland and Duba (1990), Tyburczy and Roberts (1990).

Figure 23 shows a compilation of the electrical conductivity of different
crust mantle silicates at different temperatures. This diagram is based on
the published results. We have assumed garnet peridotite as possible
composition (as an approximation) of the mantle at the asthenospheric
depth. The most abundant mantle xenoliths reported from all over the world
are spinel lherzolite (Nixon, 1987). Only Rai and Manghnani (1978) reported
some electrical conductivity data on garnet and spinel lherzolite. A thorough
study on the electrical conductivity of spinel/plagioclase/garnet lherzolite
should start. In an olivine-orthopyroxene-clinopyroxene triangle, lherzolite
and peridotite have major overlapping areas. Therefore their electrical
conductivities may or may not be diff_erent.' Since electrical conductivity
follows a different path while heating and cooling (Lastovickova, 1983)
and samples of crust mantle silicates collected from different parts of the
world show different electrical con:ductivity, therefore the electrical
conductivity of a particular silicate vary over a wide range at a particular
temperature. Figure 23 shows the range of resistivities of the crust mantle
silicates. The electrical conductivities, of the samples studied, extend over
a several order of magnitude at a particular temperature. As a result the
estimated temperature of the asthenosphere was within the range 1000 to
1400°C. With more information of high pressure temperature electrical
conductivity of the crust—mantle silicates and 3D inverted conductivities
from MT survey, this kind of exercise can be made more accurate and
meaningful in future.

4.4 Lithospheric Thickness
Lithospheric thickness has become a debatable issue. Magnetotelluric method
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Fig. 23 High pressure temperature experimental data.

certainly is a powerful tool for determining the thickness of the electrical
lithosphere. But none can be sure whether he has measured the depth of the
lithosphere. Because seismic, thermal, chemical, petrological, seismic and
electrical lithospheres exists in the literature and the depths of the boundaries
are not same. The general idea surrounds the following points: (a) as the
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LA boundary should be a brittle-ductile transition boundary, this is the
depth where a sharp change in the rheological property should exist; (b)
this is the depth where low velocity zone starts and (c) this is the upper
limit of the whole mantle or upper mantle convection cells. The fact is, if
the hardness of the mantle rock suddenly changes at a particular depth then
seismic velocity (P and S) and electrical conductivity should also change
significantly. In reality the reported estimates of the lithospheric thickness
by magnetotellurics are lower than that obtained by seismics. What can be
the possible answer?

If the discrepancy between the seismic and electrical lithospheric depth
is very large then the sudden rise in the electrical conductivity at a depth
of around 50 to 150 km in the absence of the seismic signature may be due
to some reasons other than change in the rheological properties. The authors
are proposing mantle metasomatism as on of the reasons for enhanced
electrical conductivity at a depth of 50 to 150 km. Hydrous minerals like
serpentine, epidote, phlogopite, dolomite, amphibole can originate due to
the reaction of the mantle volatiles with the silicates. Serpentinisation may
be the most probable cause. The following chemical changes can occur in
the upper mantle depth (Fyfe, 1981).

2H,0 + MgSiO; + Mg, Si0O4 —» Mg;Si,05(0OH),
Water Pyroxene Olivine Serpentine
6MgSiO; + 3H,0 — Mg,Si,0,7(OH), + Mg;Si,O5(OH),

Pyroxene Water Talc Serpentine

2Mg, SiO, — Mg;Si, Os(OH), + Mg(OH),

Forsterite Serpentine Brucite

Mg,Si0,4 + MgSiO; — Mg;Si,05(0OH),
Olivine Pyroxene Serpentine
The authors propose that serpentinisation or accumulation of other hydrous
minerals can increase the electrical conductivity where seismic velocities
may not have any significant variations. In other words, the depth of the
electrical and seismic lithosphere may or may not be the same. Reported
lithospheric thicknesses based on magnetotelluric survey are on the lower
side in comparison to that obtained by seismic methods on an average. The
lithospheric thickness obtained in this study varies from 130 to 60 km.
Pollack and Chapman (1977), based on the global distribution of heat flow
data, has prepared the lithospheric map of the world. In that the thickness
of the Indian lithosphere is shown to be below 100 Km. Lithospheric thickness
obtained by other organisations in India from magnetotelluric studies are of
the order of 100 to 120 Km (Gokern et al, 1992).
Thickness- of the lithosphere in the Singhbhum craton approximately
varied from 130 to 50 km.
Pollack and Chapman (1977) prepared the global heat flow and lithospheric
map on the basis of the 12° harmonic plot of the heat flow data. They have
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shown that the heat flow near the Singhbhum craton to be 60 mWm™ and
the lithospheric thickness is 75 km. One available heat flow result from the
copper belt thrust zone of the Singhbhum, is 54.5 + 5 mWm™ (Shankar,
1988). Anderson (1995) hinted at the chemical enrichment and metasomatism
within upper mantle as the probable cause of enhanced electrical conductivity
without bringing in the appreciable changes in seismic velocities.

It is an important question to be answered in future. If Lithosphere and
Asthenosphere boundary is a boundary of brittle-ductile transition, if viscosity
of the brittle lithosphere is 2 to 3 order of magnitude higher (Anderson,
1995) than that of the asthenosphere then both seismic velocities (Vp and
V) and electrical conductivity should change sharply. In other words estimated
lithospheric thickness by MT and deep seismic sounding should be closer.
In reality if the two estimates differ widely, then what can be the possible
reasons. It 1s due to

1. 1D interpretation of 3D MT data.

2. Poor data quality.

3. Chemical enriched relatively shallower portion of the lithospheric
upper mantle becomes too conductive to allow MT signals with
reasonable resolving power to go further down to detect the
lithosphere—asthenosphere boundary. This chemical enrichment may
be due to serpentinisation, presence of continuous phase of graphite
and mantle fluids H,0-CO,-S.

4.5 Lower Crustal Conductor

Although 1D interpretation by four different approaches show the presence
of the lower crustal conductor, 2D model obtained by Smith and Booker
(1991) RRI approach did not show the lower crustal conductor as a prominent
feature. It is present in patches at three places.

Wyllie (1988), Fyfe (1986), Fyfe (1988), Haak and Hutton (1986),
Shankland and Anders (1983), Hyndeman and Hyndeman (1968), Hyndeman
and Shearer (1989) have discussed on the possibility of having fluids in the
lower crust. Besides meteoric water which percolates down to 15 km from
the surface, fluids from within the earth’s mantle are continuously moving
upward as volatiles. These HyO-CO,-CHy-S volatiles can generate significant
amount of fluids to form a continuous phase. At lower crustal depth the
temperature is generally of the order of 400° to 500°C with a pressure
range of 8 to 10 Kb. Unless there is strong underplating and accretion in
the crust by mantle plumes, the environment is suitable for green schist
facies to amphibolite facies metamorphism. Generally the crustal rocks do
not melt at this temperature. Therefore the presence of fluids is more likely
to increase the conductivity of the lower crust.

Some discussion are available in the literature on the possible existence
of graphite at lower crustal depth (Haak and Hutton, 1986; Duba and
Shankland, 1982; Shankland and Anders, 1983, Fyfe, 1988). Mareschal et
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al. (1992) have proved the existence of grain boundary graphite in
Kapuskasing uplift, which can enhance the lower crustal conductivity. Field
work in the array form and 3-D MT modelling in future will throw further
light on the possible existence and geometry of these lower crustal conductors
(Park, 1985; Ranganayaki and Madden, 1980)
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