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Magnetotelluric (MT) data has been collected along 32 stations along E-W profile in northern part and
eight LMT (long period MT) stations in north-central part of Saurashtra region. Dimensionality analysis
is carried out prior to MT modelling for obtaining the subsurface dimension as well as the direction of the
underlying substructures. To estimate the subsurface dimensionality from MT data, different techniques
Swift skew, Bhar’s skew, normalized weights, phase tensor (PT) analysis and Wall’s rotational invariant
approach have been applied. These results suggest 1D structure for lower periods (0.01-1 s) and 3D
structure for higher periods (1-10000 s) along two different profiles indicating that the study area is highly
heterogeneous. Regional strike has been estimated through phase tensor (PT) and Groom-Bailey (GB)
techniques suggests N40°E regional strike direction that correlates well with the Delhi—-Aravalli tectonic
trend. 2D modelling of MT/LMT data sets brings out different resistivity and conductivity blocks.
Basaltic magmatic intrusion and its recrystallization have resulted in resistivity blocks with conductivity
anomalies (trapped fluids) in between them. It has been reflected as 3D structures at higher periods.
Different sedimentary basins at shallow depth are observed as 1D structure in dimensionality analysis.

Keywords. Magnetotellurics; dimensionality analysis; normalized weight index; phase tensor analysis;
modelling.

1. Introduction

The magnetotelluric (MT) method (Vozoff 1991;
Simpson and Bahr 2005) is a passive electromag-
netic technique that is governed by diffusion
Maxwell equations. MT experiment involves in
measuring time-varying magnetic field components
(Bx, By and B,) and telluric field components
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(Ex and E;) where x represents north—south, y is
east—west, and z vertically downward components.
Analysis of MT data is carried out in frequency
domain and computations of cross-spectra/power
spectra are carried out between (B, and E;) and
(By and Ey) for different frequencies to determine
impedance tensors (Zyx, Zxy, Zyx and Zy,). Appar-
ent resistivity (pxx, Pxy, Pyx and pyy) and phases
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(Dxxy Dsy, Dy and Oy ) are estimated for different
frequencies from these impedance tensors.

Observed MT responses are distorted due to
cultural and geological noise. Local shallow small-
scale conductivity anomalies can lead to galvanic
distortions and/or current channelling causing
frequency independent scaling of the MT resistiv-
ity curves leaving phases unchanged. These effects
are normally minimized through tensor decompo-
sition analyses and regional strike determination
(Groom and Bailey 1989, 1991; McNeice and Jones
2001; Caldwell et al. 2004; Moorkamp 2007).

Dimensionality analysis is carried out prior to
modelling for determining whether the computed
impedance tensors, apparent resistivities and pha-
ses at a given frequency correspond to 1D, 2D or
3D geoelectrical structures. The main purpose of
carrying out this analysis is to determine the
variation of strike direction with depth or presence
of surficial distorting bodies (Marquis et al. 1995;
Marti et al. 2010). MT data interpretation is based
on the dimensionality analysis, whether the struc-
ture is 1D, 2D or 3D. In this paper, dimensionality
and directionality analysis have been applied for
the MT/LMT data collected across the northern
part of Saurashtra by using different techniques
and compared with 2D models obtained after
inversion.

2. Geology of Saurashtra Region

The Deccan trap basalts have erupted 65 Ma
(Baksi 1987, 2014; Pande 2002; Chenet et al. 2008)
on the Archean crust of the Indian shield (Chak-
rabarti and Basu 2006; Ray et al. 2008). These
traps cover the older formations of Dharwar, Ara-
valli, Bastar and Bundelkhand cratons and the
Satpura mobile belt (Bastia and Radhakrishna
2012) and occupy an area of ~0.5 million km? in
central and western parts of India. It is associated
with the breakup of India from Seychelles (Norton
and Sclater 1979; Courtillot et al. 1986; Royer et al.
1989). These traps have erupted in a span of 4-5
Ma during the Cretaceous—Tertiary boundary
(Bhattacharji et al. 1996; Hofmann et al. 2000;
Chenet et al. 2008).

Saurashtra region is covered by Deccan traps
except along the coastal fringes where Tertiary and
Quaternary sediments are exposed (as shown in
figure 1).In the northern part of Saurashtra region,
a small patch of Mesozoic sedimentary rocks are
exposed. This region consists of several volcanic
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Figure 1. Geological map of Saurashtra and the surrounding
regions (after GSI 1998) showing that entire region is covered
by Deccan traps. Triangles indicated the two different MT/
LMT profiles located in the northern part of Saurashtra
region. Profile-2 contains LMT stations only.

plugs (Porbander in SW, Junagadh in south and
Palitana in SE) and is composed of acidic, alkaline
and mafic/ultramafic rocks (Merh 1995; Sheth
et al. 2012). To determine the complex geoelectri-
cal structure beneath the trap-covered region of the
northern part of Saurashtra, 32 MT stations and 8
LMT stations are deployed in an EW direction
(along two profiles) covering different geological
provinces as shown in figure 1.

3. MT data acquisition and processing

Regional MT/LMT data were acquired along a
profile with M'T station spacing around 6-8 km and
LMT station at an interval of ~15-20 km in the
northern part of Saurashtra region as shown in
figure 1. The MT data were collected in a frequency
band 0.001-10000 Hz for a period of 36 hrs,
whereas LMT data were collected in a period
ranging from 10 to 30000 sec, for a period of 3—4
weeks. In the survey, two MTU-5A units were
installed simultaneously about 6-8 km apart and
are used as a remote reference station during data
processing so as to remove noise and improve the
quality of data (Gamble et al. 1979).

The MT time series data were processed by using
SSMT 2000 software package available with
Phoenix Geophysics system based on robust
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Figure 2. Apparent and phase curves obtained after remote reference technique, (a) MT03-MT14 over Jamnagar basin,

(b) MT17-MT26 over Jasdan basin, (c¢) MT28-MT33 over western part of Cambay basin, and (d) LMT data acquired along
profile-2 in the north-central part of Saurashtra region.
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Figure 3. The variation of the (a) Swift skew and (b) Bahr skew with respective periods for different sites along the two different

profiles (P-1 and P-2) indicating at higher periods, subsurface is showing 3D in nature.
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reference cascade decimation technique (Jones and
Jodicke 1984; Jones et al. 1989). LMT data were
analyzed by using the LEMI LMT data processing
software package supplied by LVIV Centre of
Institute for Space Research. This software is built
on the concepts of Egbert and Booker (1986) and
Eisel and Egbert (2001). The processed MT/LMT
apparent resistivity and phase curves along two
profiles over different basins for selected stations
are shown in figure 2(a—d).

MT data is presented in the form of apparent
resistivity and phase’s wvs. frequency curves. This
picture describes variation of apparent resistivity
with frequency that is useful in qualitative inter-
pretation. Figure 2(a) shows MT apparent and
phase curves over Jamnagar basin. Stations MT-
03, MT-05, MT-09 and MT-14 are located over
Jamnagar basin. This basin is well reflected
1072-10° Hz in all MT stations except at MT-14
that brings out a resistive block located close to
Jasdan basin. Stations MT-17, 22, 24 and 26 are
located over Jasdan basin (figure 2b). These curves
show conducting sedimentary basin at high fre-
quencies and resistivity increases with frequency.
MT-28, 29, 31 and 33 are located over western
part of Cambay basin (figure 2¢). Low resistivi-
ties (1-5 Qm) have been observed over Cambay
sedimentary basin from frequency 107-107" Hz
and resistivity increases with frequency. Fig-
ure 2(d) shows LMT curves along profile-2. High
resistivity is observed along all the LMT stations
from 107 to 0.1 Hz and above 10 Hz shows a
moderately conductive structure. Along the sta-
tions C23-C20, phases are distorted due to
presence of highly conducting sediments at
shallow depths within the Cambay basin. This
causes anomalous phases that are produced due
to higher resistivity contrast between basement
and sedimentary basin (Lezaeta and Haak 2003;
Selway et al. 2012).

4. Dimensionality analysis using different
techniques

Prior to MT modelling, dimensionality analysis is
carried out to determine whether the computed
responses (from observed data at a selected fre-
quency) correspond to 1D, 2D or 3D geoelectrical
structures. It allows in identification and quantifi-
cation of distortions (Groom and Bailey 1989;
Smith 1995; McNeice and Jones 2001) and recovery
of the strike of the subsurface structures (Marti
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et al. 2010). Different dimensionality methods are
explained below.

4.1 Swift and Bahr skew

Skewness is the first parameter used in MT for
determining the dimension of subsurface structures.
The Swift skew (Swift 1967) uses MT impedance
tensor and is based on the amplitude response tensor.
The Swift skew is defined as follows:

Z Z
Swift skew = M
(ny —Zyx)
Drawback of the above method is that

distortions are present due to coupling of the regio-
nal 1-D or 2-D inductive response with localized,
small-scale conductive anomalies (Simpson and
Bahr 2005). In order to overcome the drawbacks
of Swift method in the presence of local distortions,
Bahr (1991) has introduced skew values which
depend on the phases of the impedance tensor that
are not affected by amplitude distortion effects.
The Bahr’s phase-sensitive skew is given by

I[D1S:] — [S1Dy]|"*

Bahr’s skew =

| D ’
where
S1= Zyx + Zyy; So = Ty + Ly,
Di= Zyx = Zyy; Do = Zyy = Zy

Generally, if skew values are >0.3, then it implies
that the MT data are 3D. Swift and Bahr skew
values were calculated for both the profiles in the
northern part of Saurashtra region as shown in
figure 3(a and b). At lower periods, skew values are
< 0.3 indicating that the structure is 1D or 2D in
nature. In both the profiles, at higher periods the
skew values are > 0.3 indicating the 3D subsurface
complex behaviour.

4.2 Normalized dimensionality weights

Noting the problems in Swift skew, Kao and Orr
(1982) introduced a set of three normalized
dimensional weights (D;, Dy and Dg3). These
weights deal with the amplitude of impedances (Z;,
Zs, 7.3 and Z,) that represent the relative weights of
the dimensionality of 1-D, 2-D and 3-D structural
contributions simultaneously. The relative weights
Dy, D, and D5 are given by
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Figure 4. The normalized weights (D1, D2 and D3) with frequency for different sites over different basin as follows: (a) MT03-
MT14 over Jamnagar basin, (b) MT17-MT26 over Jasdan basin, (c) MT28-MT33 over western part of Cambay basin, and
(d) LMT stations along the profile-2 in the northern part of Saurashtra region.
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The above weights are expected to be in the range
between 0 and 1, for 1D case, D; > Dy > Ds. In case
of 2D or 3D structure present, the values of Dy and D3
are greater than or nearly equal to the 0.2 where the
D; < D,. Northern part of Saurashtra MT/LMT
profiles were investigated by using this technique,
inferred the condition D> Dy>Ds is true at all the sites
for both the profiles over different basins (figure 4 a—d)
and also at most of the sites the values of Dy and D3 are
> 0.2 indicates that at lower frequencies subsurface is
2D or 3D in nature. However, this analysis gives
simultaneous qualitative assessment of the subsurface
dimensionality that is useful in supporting the other
methods.

4.3 WALDIM analysis

This method is known as Weaver, Agarwal and
Lilley dimensionality analysis (Weaver et al. 2000).

WALDIM analysis (Marti et al. 2009) is a numer-
ical approach in which total seven independent (I,
I, I3, 1y, I5, Ig, I7) and one dependent (Q) invari-
ants are analyzed based on the WAL invariant
criteria (Weaver et al. 2000). Invariants I3-I; and
Q are used to determine the dimensionality and
parameters necessary to correct galvanic distor-
tion. The criteria for different dimensionality are
shown in table 1 (after Marti et al. 2009). By using
table 1 as a basic criterion, one can visualize from
figure 5, that at high periodicity the subsurface is
3D or 3D/2D, and at lower periodicity, the sub-
surface is 1D in nature for the profile-1, whereas in
profile-2 containing LMT data show a complex 3D
subsurface structure.

4.4 Phase tensor analysis

Phase tensor (Caldwell et al. 2004; Moorkamp
2007) analysis is one of the important tools to
analyse the dimensionality of the subsurface and is
unaffected by any galvanic distortions. It gives
distortion-free phase information on the regional
scale. The phase tensor is defined by:
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Table 1. Different conditions for subsurface dimensionality based on WAL invariant values of the MT tensor (after
Marti et al. 2009).

I3-I; and Q values Geoelectric dimensionality
L=L=1;=I=0 1D
I3#0 or I, #0; Iy = I = 0; I = 0 or Q=0 2D
I3#0 or I,#0; I5#0; I=0; I;=0 3D/2D twist

2D affected by galvanic distortion (only twist)
I3#0 or 1, #0; I5#0; Is=0; Q=0 3D/1D2D

Galvanic distortion over 1D or 2D
(Non-recoverable strike direction)
I3#0 or I, #0; Iy = I4=0; I;=0 or Q=0 3D/1D2D
Galvanic distortion over 1D or 2D
Resulting in a MT diagonal tensor

I3#0or I, #0; Iy # 0; Ig # 0; I;= 0 3D/2D
General case of galvanic distortion over a 2D structure
I;#0 3D (affected or not by galvanic distortion)
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Figure 5. WALDIM dimensionality analysis implemented for two different profiles (P-1 and P-2) in the northern part of
Saurashtra at each site for complete periodicities. At higher periodicity, MT data significantly shows that subsurface is 3D in
nature.
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Figure 6. (a) Shows the subsurface heterogeneity using 8 values. At higher periods, f§ value exceeds +5° indicates 3D subsurface.
(b) The ellipses are plotted so that the vertical axis corresponds to an NE-SW orientation. The minimum phase is < 50
corresponds to a resistive block that corresponds to a recrystallized magma related to hotspot activity. (c) Phase tensor ellipses
along the profile for all periods, for short periods (0.1-100 s) the phase angle between electric and magnetic fields (@,,.) is low,
indicating a high resistive block correlating with (b). (d) Also shows high resistive mid-crustal layer as observed in (b and c).

Live 4,
_ -1 _ Tx Ty
o= X Y—[zyx Zy}.

where X and Y are the real and imaginary parts of
the impedance tensor (7). It is represented as an
ellipse with maximum phase as an ellipse major axis
(Pax) and ellipse minor axis (@) for the minimum
phase. Caldwell et al. (2004) defined a parameter
skew () which defines the inherent dimensionality of
the subsurface. It is represented as follows:

1 P12 — 4521)
= 0.5 tan 1<7 .
p Dy + Do

In case of 1D, the phase tensor ellipse more or
less is equal to circle, because @,,,, and @,,;, are
almost equal and skew (f) is also zero. For 2D
structures, @, and @,,;, are different with skew
(P) equal to zero is a necessary condition, but not
sufficient (Caldwell et al. 2004). If the major axis of
the phase tensor ellipse is rotated by the angle o
(geoelectrical strike angle), then the major axis of

the phase tensor ellipse is aligned parallel or
perpendicular to the regional strike direction
denoting 90° ambiguities corresponding to the TE
or TM mode. The skew angle f measures the
deviation from two-dimensionality and it
represents ‘quasi-2D’ (if I8l < 3°). In case of 3D, f
is non-zero and the direction of the major axis is
given by the angle o—f.

Figure 6 shows the colour filled phase tensor
ellipses along the two profiles. The four colour
schemes used to characterize the subsurface
dimensionality or heterogeneity f§ (figure 6a); arc-
tan (@) (figure 6b); @, (figure 6¢) and @,
(figure 6d). At short periods, the phase tensors are
nearly circle along the profile, indicating 1D
structure. As periodicity increases, these circles
become ellipse and asymmetry in the regional MT
response due to mid-crustal inhomogeneities. In
the mid-crustal level, low phase angles (arc-
tan(@pin), Pumax, and ;) are corresponding to
2D structure. At lower frequencies Il is greater
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Figure 6. (Continued.)

than or less than 5° indicating that the subsurface
structure is 3D. The low phase angle (®,,,, and
®,,in) is corresponding to the rapid change in
resistivity (Stagpoole et al. 2009). This low phase
angle correlates well with a recrystallized older
Precambrian crust that forms the uplifted blocks
derived from the lithospheric mantle along profile-1
(Vijaya Kumar et al. 2018, 2020). Similar results
are obtained along LMT profile-2.

4.5 Strike analysis

Obtaining the strike direction is one of the impor-
tant criteria before modelling the MT response. In
order to obtain strike direction, we have utilized
two different methods such as Groom-Bailey (GB)
and phase tensor (PT) as shown in figure 7. In
figure 7(a and b), the strike direction obtained for
the profile-1 by using GB and PT analysis is
shown. Regional strike N40°E coincides with Del-
hi—Aravalli trend. Strike obtained for the profile-2
by using GB and PT analysis is shown in figure 7(c
and d). Here, the strike direction obtained from GB
is different from PT analysis as station spacing

along profile-2 is more than 20 km. Thus, we have
adopted N40°E as a regional strike for 2D analysis.

5. 2D inversion

For 2D modelling/inversion, the MT impedance
tensor is decomposed into two independent (TE
and TM) modes. In the transverse electric (TE)
mode, electric field is measured parallel to geo-
electrical strike, while the magnetic field is per-
pendicular. Whereas in the transverse magnetic
(TM) mode, magnetic field is parallel to the geo-
electrical strike and electric field is measured per-
pendicular to strike. The decomposed responses of
TE and TM mode data were inverted by using the
non-linear conjugate gradients (NLCG) algorithm
of Rodi and Mackie (2001) as implemented in the
WinGLink software package. Thus, the subsurface
resistivity model is obtained by jointly inverting
TE and TM mode apparent resistivity and phase
data using the above inversion.

As TE mode data is sensitive to localized
heterogeneities than TM mode data, more
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Figure 7. (a and b) Rose diagram plot of regional strike direction for broad period through Groom-Bailey decomposition (GB)
and phase tensor (PT) techniques for the profile-1. In these analyses, regional strike obtained by above techniques is about N40°
E. (c and d) are the strike direction for LMT data through (GB) and phase tensor (PT) techniques for the profile-2. In this case,
regional strike obtained by GB analysis is about N40° E and by PT it is about N20° E. This ambiguity may be due to large station

spacing between LMT sites.

importance is given to TM mode to avoid these
inherent effects which cause poor data fit in TE
mode (e.g., Jones 1983; Wannamaker et al. 1997;
Ledo et al. 2002; Ledo 2005). The dimensionality
analysis suggests that the presence of 3D structures
at higher periods along the profile-2. In the case of
TM mode, the current flows across the boundaries
of different structures permit to build charges on
the interfaces helps in locating complex structures

(Berdichevsky 1999; Ledo et al. 2002, 2005; Liang
et al. 2015). Thus, in the presence of 3D conduc-
tivity structures, TM mode is an efficient mode to
locate the subsurface resistivity structures. Hence,
we have interpreted TM mode data along profile-2.
Details of modelling for the profile-1 are discussed
by Vijay Kumar et al. (2018). Interpreted model is
shown in figure 9(a). In the present work, 2D
inversion of LMT data collected along profile-2 has
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been worked out. Error floor for resistivity is given
as 10% and for phases it is about 5% (for TM mode
data). Initially, we have used 100 Qm uniform
resistivity half-space as an initial model mesh
containing 59 rows and 123 columns for obtaining
geoelectrical model. Different models were gener-
ated by using different smoothing parameters (1)
varying from 1 to 100. When plotted as an L-curve,
it has been found that =3 can be considered as a
preferred value of the trade-off parameter (figure 8)
for inversion. Inversion model obtained after 100
iterations with an RMS misfit of 0.758 is shown in
figure 9(b) (for TM data). Comparison between
observed and calculated apparent and phase curves
are shown in figure 10. Dots signify observed
curves, whereas solid line shows calculated denot-
ing that overall data matching is in good agree-
ment. Interpreted model brings out different
resistivity and conductivity structures that corre-
late well with the model as shown in figure 9(a).
These results are discussed below.

Jasdan basin

(a) Jamnagar basin Cambay basin
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Figure 9. (a) Two-dimensional geoelectrical model derived from TM data along the profile-1 delineated different hidden basins
(Jamnagar, Jasdan and Cambay) beneath the northern part of Saurashtra region underline by different resistive and conductive
blocks. (b) Interpreted model across profile-2 brings out different resistive blocks R2 and R3 with a conductive zone C3 beneath
Jasdan basin. C2 and C3 are mid-crustal conductivity anomalies that have been attributed to carbonate fluids. C1 is a moderate
conductive anomaly in a depth range of about 80-100 km related to partial melting of lithosphere. The dashed line in two profiles
denotes the Moho configuration obtained from seismological studies (Chopra et al. 2014).
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6. Results and discussion

Dimensionality of regional subsurface structure is
obtained by Swift’s skew and Bahr’s skew. Swift
skew values are found to be <2 for a period range of
10 to 10* s suggesting 1D/2D nature of the
structure. Above this period range, it suggests 3D
nature of the structure. Similar results are also
observed in Bahr’s skew. Using normalized
weights, it is suggested that the structure is 1D in
nature for a period range of 107°-10% s and beyond
this range, it is 2D/3D in nature. WALDIM code
(Weaver et al. 2000) has been utilized for per-
forming the dimensionality analysis of the northern
part of Saurashtra region. Weaver et al. (2000)
presented a dimensionality study based on sets of
rotationally invariant scalars computed from the
observed MT impedance tensor. It brings out 1D
substructure for a period range of 10 to 1 s and
3D nature for periods above 1s.

Phase tensor ellipse calculated for a period range
of 107 to 1600 s is shown in figure 6(a—d). 1D, 2D
and 3D structures are classified based on lambda
and beta values (Bibby 2005). Based on the nota-
tion given by Bibby (2005), the calculated phase
tensor ellipse for a period range 107 to 1 s is close
to the circular which indicates 1D subsurface
structure, later these circular patterns become
ellipses with major axis aligning in NE-SW direc-
tion and suggests 3D nature. This NE-SW trend is
consistent with Delhi—Aravalli trend. Overall
dimensionality analysis suggests that shallow

structure is 1D in nature and at higher periods, it is
3D in nature.

Strike angle plays an important role in modelling
the MT data (Jones and Groom 1993). In the
present study, strike direction is estimated through
phase tensor (PT) and Groom-Bailey (GB) tech-
niques. Regional strike assessed through PT and
GB techniques suggests an N40°E direction and is
consistent with the Delhi—Aravalli tectonic trend.
MT data has been rotated by N40°E and 2D
modelling brings out different resistive and con-
ductive blocks that are discussed below.

It is well known that Deccan volcanic province
(DVP) forms one of the Large Igneous Provinces
(LIPs) with tholeiitic magmas (Chenet et al. 2008)
that have erupted through different fissures (Nair
and Bhusari 2001). These magmatic intrusions are
related to decompression melting of an abnormally
hot mantle material brought to the base of the
lithosphere (Armitage et al. 2010). Thus, conduc-
tivity anomaly C1 and moderate resistivity values
in a depth range of about 80-100 km in both pro-
files may be attributed to partial melting that
causes subcrustal melting and significant alteration
of the lithosphere. This anomaly C1 is also located
close to the track of Reunion hotspot along the
eastern edge of the Saurashtra (Campbell and
Griffiths 1990) and correlates well with the low
seismic velocity zone (LVZ) inferred from seismic
tomography studies (Kennett and Widiyantoro
1999; Madhusudhan Rao et al. 2013, 2015; Kumar
et al. 2016). Thus, the rising plume activity at
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upper mantle depths may have formed enriched
melts at the base of the lithosphere producing
conductivity anomaly C1.

The above magmatic intrusions have propagated
to the lower crust from deep within the lithosphere
based on geochemical analysis (Karmalkar et al.
2008; Vijaya Kumar et al. 2010, 2017). High con-
ductivity anomalies C2 and C3 in both profiles are
attributed to carbonate fluids. These volatile fluids
(H20 and COs,) are released upon crystallization of
basaltic underplated material (Frost et al. 1989;
Wannamaker et al. 1997; Bolongo et al. 2013;
Vijaya Kumar et al. 2018; Nagarjuna et al. 2020).
Linear conductive anomaly C4 in profile-1 may
represent the electrical image of major fault/frac-
ture zones of crustal scale through which Deccan
volcanism may have taken place and could be
related to dehydration of minerals during meta-
morphism (Byerlee 1993). According to Vijaya
Kumar et al. (2018), conductivity anomaly A in
profile-1 is associated with interconnected melts
that have been fed to crustal layers by astheno-
spheric upwelling and underplated at the lower
crust as magma chambers.

In both profiles, resistivity blocks R2 and R3
form the western and eastern fringe of Jasdan basin
with a conductivity block C3 in between them.
These blocks may represent older (Precambrian)
crust existing before the Deccan volcanism as
inferred from seismic tomography studies based on
high Poisson’s ratio (Praveen Kumar and Mohan
2014; Chopra et al. 2014). Later, mafic/ultramafic
intrusions due to Reunion hotspot activity (Biswas
2005; Chatterjee and Bhattacharji 2008; Sheth
et al. 2013; Mukherjee et al. 2017) and recrystal-
lization of these blocks may have given rise to high
resistive values indicating heterogeneity within the
crust (Vijaya Kumar et al. 2018). Similarly, in
profile-1, resistivity blocks R1 and R2 form the
fringes of Jamnagar basin, whereas R4 in profile-1
is observed beneath the western part of Cambay
basin. These conductive and resistive blocks have
been reflected as 3D structures in dimensionality
analysis.

7. Conclusion

This paper has used different techniques to differ-
entiate the geoelectrical dimensionality of two
profiles in northern part of Saurashtra. This anal-
ysis denotes that the crust beneath Saurashtra
region is highly heterogeneous with near surface 1D

J. Earth Syst. Sci. (2021)130 102

effects, whereas at middle and lower depths 3D
effects are observed.

Sedimentary basins at shallow depth have been
reflected as 1D structure. Resistivity blocks
(R1-R4) with conductivity blocks (C2-C4) in
between them from mid-lower crust are reflected as
3D structures. Moreover, induced currents are
deflected by resistive volcanic plugs causing cur-
rent concentration in conductivity bodies leading
to out of quadrant phase (Weidelt 1977; Jones
1983). As current channelling is difficult to explain
by 1D and 2D models, it is considered to be 3D
nature and requires complex 3D modelling.
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