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Abstract
Background/Objectives: The ionospheric response to the tropical cyclone
(TC) OCKHI of December 2017 in the equatorial region is presented in
the study. Methods/Statistical analysis: The ionospheric response includes
a change in Total Electron Content (TEC) is utilized using the stations of
Tirunelveli and Bangalore. The critical frequency (foF2) from Ionosonde over
Tirunelveli station also considered to study the TC effect in the F2 region of
ionosphere. Findings: It has been observed that the significant changes in the
equatorial ionosphere exhibits during the tropical cyclone (TC)OCKHI. They are:
Ionospheric parameter of vertical total electron content (VTEC) varies during
the TC (i.e. from Day 332 to Day 336 of the year 2017) as the cyclone center is
near to the Tirunelveli (8.7º N, 77.8º E) and the same follows for the IGS station
of Bangalore. In addition, ionosonde measurements of foF2 perceived for the
local night time support the TEC decrease noted over Tirunelveli when the
cyclone attains its peak on 01 December 2017. Novelty/Applications: Using
the ionosonde data over the equatorial ionosphere, such behavior may not be
reported earlier to the best of my knowledge. The gravity wave induced by the
TC Ockhi redistributes the element of the ionosphere due to strong convection
and lightning activity.

Keywords: TEC; Cyclone; foF2; OCKHI; and gravity waves

1 Introduction
Mostly, the geomagnetic and solar activity affects the ionosphere region from above
but the influence of the lower atmosphere also plays a role. Apart from this, its state
is also influenced by the dynamical forcings of the lower atmospheric origin (1). The
meteorological events like cyclone, tsunamis, and others from the lower atmosphere
also affect the ionosphere F region and reported by many researchers. The TC is
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one of the strongest atmospheric disturbance originates in the troposphere over oceans and it rotates in the anticlockwise
direction in the Northern Hemisphere and clockwise direction in the Southern Hemisphere due to the effect of Coriolis
force (2). Effects of tropical cyclone (TC) to the ionosphere have been emerging interest to the scientific community in recent
years. The upward propagation of waves from troposphere to ionosphere is an essential source of energy and momentum for
the ionospheric changes (3). The changes in the ionosphere region is due to the mechanism of development of atmospheric
turbulence by generation of internal waves such as tides, Rossby waves, Kelvin waves and gravity waves (GW) (4). Also, the
turbulence leads to transferring the energy influenced from lower atmosphere to ionosphere induced by tropical cyclone
(TC) (5,6). Besides, the gravity waves in the form of convective activity (7) and atmospheric tides generated by tropospheric
weather systems (8) impacts on the variation of electron density in the ionosphere by analyzing the Total Electron Content
(TEC) (9). The GWs generated by TC have a time period with range of several minutes to hours depends on the intensity and
duration of the event (10) and the waves can propagate in the horizontal direction for the several kilometers (11). The variation
of ionosphere is to be identified by the effect of considering both or either critical frequency of F2 (foF2) and virtual height of
F2 region (h’F2) (12,13) and the impact of gravitational waves in the ionosphere due to the electrical, chemical and dynamical
processes (14).

In Indian region TC classified by different names depending on the wind speed and pressure difference such as low pressure
area, depression, deep depression, cyclonic storm, severe cyclonic storm, very severe cyclonic storm, and super cyclonic storm.
During the strong TC Mahesan and Hudhud passed over Indian sector observed to be decrease in TEC around equatorial
region (11). Nowadays, GNSS technique plays a vital role because of the increase in observing stations at different places for
measuring the TEC and thereof the transmitter and receiver particularly used in different stations and also to study the
ionospheric perturbations during the passage of tropical storms (15). The ionospheric response of cyclones over Pacific Ocean
observed to be an increase in TEC variations as the wind speed increases during the TC (16). Due to the intense convection,
the electric charge formed at the top of TC penetrates in the ionosphere increases the electron concentration in the F layer
reveals the coupling of troposphere and ionosphere (17). Whereas in another case the TEC tends to decrease while the tropical
storm reaches the land and begins the trend of decreasing and then reverses when the storm effect gets reduced (18,19). There
is a possible change in the ionospheric parameter of foF2 of 10- 20% over the tropical cyclone zone at a distance from 3800 to
5500 km (20). In the present study, for the first time, the ionospheric parameters are studied in the Equatorial region of Indian
sector on the effect of Tropical Cyclone OCKHI during the period of November and December 2017.

2 Data analysis and Methodology
We have used GPS TEC observations from Scintillation Network Decision Aid (SCINDA) GPS receiver at Tirunelveli. To study
the response of cyclone effects in the GPS TEC, International GNSS Service (IGS) TEC data for station IISC Bangalore were
obtained from ftp://garner.ucsd.edu/pub/rinex/ (see http://www.igs.org/). We have also used our own Canadian Advanced
Digital Ionosonde (CADI) data at equatorial station, EGRL, Tirunelveli. The ionosonde is a well-proven technique to study the
ionosphere, and it provides useful information about various ionospheric layers and their temporal variations. CADI is widely
used by many research groups across the globe (21). Each GISTM can track up to 11 GPS C/A-code signals at the L1-frequency
of 1.575 GHz and L2 frequency of 1.2 GHz. At the time of data analysis, the satellite biases should be corrected for the accurate
measurement of TEC associated with GPS observations. Using ionospheric shell-model, vertical TEC were calculated and has
been used in the present study (22). The TEC data is collected for every one minute and the satellite and receiver bias correction
be made to obtain the slant TEC directly.

The vertical TEC is obtained by using the following Eq. (1) model.

VTEC = (STEC− [Br+Bs])S( /0) (1)

Where, Br, Bs are receiver and satellite bias respectively,
∅ Elevation angle of satellite in degrees, and
From Eq. (2), S (∅) obliquity factor with zenith angle (θ ) at IPP

S(∅) =
1

cosθ
1√√√√[

1−
(

Recos( /0)
Re+h

)2
]

(2)

Where, Re is the Earth’s mean radius in km, h is the height of the ionospheric Shell (in km) above the Earth’s surface
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The Dst (Disturbance storm time) data obtained from World Data Center (WDC) (http://wdc.kugi.kyoto-u.ac.jp) of 1-h
temporal resolution and F10.7 data obtained from Space Physics Interactive Data Resource (SPIDR) of NOAA (http://spidr
.ngdc.noaa.gov/spidr/time.do) of 1-day temporal resolution are used as indicators of the intensity of geomagnetic and solar
activities, respectively. The Tropical Rainfall Measuring Mission(TRMM) was launched in 1997 with the precipitation radar
in the observation satellite with the aim of measuring the rainfall and energy (23) (http://trmm.gsfc.nasa.gov/). To investigate
convective activity during the observational period, we have utilized precipitation data available at 0.25x0.25 latitude and
longitude grid provided by TRMM as the proxy.

3 Observation and Results

3.1 Overview of Ockhi cyclone

Fig 1. Path of the Cyclone OCKHI (Black color) and the location of stations at Tirunelveli and Bangalore (Black color Star symbol)

TC Ockhi occurred as a severe cyclonic storm (SCS) with its track length of about 2538 km and life span of ~162 hours
(about 7 days) (Source: IndianMeteorological Department’s Regional SpecializedMeteorological Centre for Tropical Cyclones,
http://www.rsmcnewdelhi.imd.gov.in). On Drovak’s intensity scale, TC Ockhi attained the highest category of T5.4. Figure 1
presents the track of its eye from Indian Ocean to Arabian Sea during 29 November – 06 December 2017 (black color). GPS
stations – Tirunelveli and Bangalore in India used in the present study are also shown in black star. TC Ockhi started with
the formation of a depression on 29 November 2017 over southwest Bay of Bengal and centered at ~ 6.5º N latitude and 80.4º
E longitude. Subsequently, this depression intensified into deep depression (DD) near the local sunset. Next, this DD moved
west-northwestwards and promptly intensified into a cyclonic storm (CS) with centre at ~ 7.5º N, 77.5º E on 30 November at
0300 h UT.Within 6 hours, this CS underwent rapid intensification to become a severe cyclonic storm (SCS) almost close to the
southern tip of the peninsular India near local noon of 30 November. Meanwhile its track moved from southwest Bay of Bengal
to southeast Arabian Sea via the tip of the peninsular India. On early morning hours of 01 December, this storm attained the
status of very severe cyclonic storm (VSCS) andmoved north-eastwards thereby maintaining its intensity till the early morning
hours of 3 December. Under the influence of strong upper level westerlies, this storm recurved from east-central Arabian Sea
during 03 – 04 December. Gradually this cyclone weakened to a depression during midnight on course of its movement along
the western coast of the Central India during 05 December and finally made a landfall on 06 December (24).

3.2 Meteorological and geomagnetic conditions during occurrence of TC Ockhi:

Figure 2 summarizes few meteorological and geomagnetic parameters noted during 16 November – 08 December 2017 along
with the TEC measurements. The vertical black lines in the Figure depict the start and end of Ockhi cyclone. Wind speed
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associated with the cyclone development is shown in Figure 2(a). During the severe cyclone activity, this wind speed reached
the maximum of 80 – 85 Knots per hour. Figure 2(b) and (c) respectively represents Solar F10.7 cm radio flux and Dst index.
Raw TEC measurements over Tirunelveli and Bangalore are shown in Figure 2(d). During this period, Ap index varied in the
range of 01 - 28 units, Dst index varied from -45 nT to 22 nT, and F10.7 cm flux lay between 65 and 75 units. As suchmoderately
quiet geomagnetic conditions were noted on few nights during the cyclone occurrence.

Fig 2. (a) Wind speed of the cyclone Ockhi (b) F10.7 solar indices (c) DST index (d) Diurnal variation of VTEC for Tirunelveli (Black) and
for IISC (Red) for the period of 320 to 341 of year 2017.

3.3 Diurnal behavior of TEC over Tirunelveli and Bangalore:

During day number 333-335 when TC Ockhi was closer to the southern tip of the Peninsular India, we observed a significant
decrease in TEC (about 5 Total Electron Content Unit, TECU) over both Tirunelveli and Bangalore (shown in Figure 2(d)).
However, TEC decrease was more prominent over Tirunelveli in comparison to that over Bangalore. During this time, the
wind speed reached its maximum. Most notable decrease in TEC was noted on day 338 over both stations. TEC values were
found to recover back to their original values after this cyclone moved significantly away from the station. Figure 3 presents
the diurnal variation of TEC over Tirunelveli (top panel) and Bangalore (bottom panel) during 29 November – 02 December
2017 corresponding to TC occurrence. In order to visualize the TEC changes during TC occurrence, we estimated mean TEC
variation of four quiet days during 17 – 20 November over both stations and are shown in Figure 3. Quiet day variations of TEC
over both stations are marked by an increase starting from local sunrise (~ 0000 – 0100 UT), followed by a maximum around
noon (~ 1000 UT) and a decrease thereafter. Such diurnal trend is representative of TEC variations over the equatorial and low
latitude ionosphere (25). During the TC occurrence, a prominent decrease in TEC during 0400 – 1400 UT can clearly be seen at
both the station. Generally TEC decrease of 3 – 4 TECUwith reference to quiet day variation was noted. We found a maximum
decrease of TEC of about 12 TECU around 0900 UT on 29 November over Bangalore. Further, we observed a well-marked
decrease in TEC (~ 3 – 4 TECU) over Tirunelveli during 1600 – 2000 UT (corresponding to local midnight hours) on 29 -
30 November and 01 December. However, such decrease was less pronounced over Bangalore. Figure 3 also indicates that the
decrease noted during the night was less evident over Bangalore.
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Fig 3. (a) Diurnal variation of VTEC during cyclone days (29 November to 2 December) and mean quiet days (Magenta color) of Station
Tirunelveli and IISC Bangalore.

3.4 Observation of critical frequency (foF2) over Tirunelveli:

In order to see cyclone response in the ionospheric scaling parameters, the foF2 has taken with the sampling interval of 10
minutes for the period of 14 days (day number 329 to 342) with respect to the TC period. The Figure 4 depicts the temporal
variation in foF2 during day time (top panel) and night time (bottom panel) for the station Tirunelveli. As seen in Figure 4,
the foF2 noticed to be diminished at about ~ 2-3 MHz at 8-10 IST on day number 335 and 336 which is associated with severe
cyclone occurred close to Tirunelveli. However, an enhancement in foF2 of about 8-10 MHz is also found in the early morning
hours (3 - 4 IST) on day number 336. In general, foF2 rises after sunrise and it reaches peak in the early afternoon, there is a
rapid fall shortly after sunset during quiet day conditions over low latitude region. It has also been suggested that gravity waves
could be responsible for the night-time ionospheric density gradient enhancement and hence it has been the reason for the
observed higher variability in foF2 at night-time rather than during daytime (12,26).

Fig 4. Variation of foF2 for Day time and Night time of Tirunelveli station for the period of 329 to 341 of year 2017
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3.5 Observations of GWs in TEC measurements:

GWs are the important dynamical coupling elements of themesosphere-lower thermosphere-ionosphere region. Owing to this,
we interpret thesewave-like variations as the signatures ofGWs in the ionosphere and extended our study to identify theseGWs.
First, we calculated the residual TEC data for a particular day by subtracting daily mean TEC variation from original TEC data.
Such removal of mean daily TEC trend was performed to enhance the GWs features embedded in TEC variations during the
TC occurrence. Next, the wavelet analysis was performed to identify the GWs present in residual TEC data. Figure 5 depicts the
wavelet analysis was carried out on residual TEC data over Tirunelveli (top) and IISC, Bangalore (bottom) during 28 November
– 02December 2017 i.e. starting from the day when TCOckhi was deep depression, its subsequent development to a very severe
cyclonic storm and till its decay to severe cyclonic storm. Table 1 summarizes the different wave periodicities identified during
TC occurrence along with the time information when that particular wave was dominant. Table 1 clearly indicates that (i) GWs
periodicities were common at both locations, and (ii) GWs were first seen at Tirunelveli and then noted at Bangalore. Wavelet
analysis shows that the time period of observed GWs lay in the range of 1.4 – 6.5 h, and fell in two categories viz. 1 – 3 h and 4
– 6 h. Usually excited GWs with different frequencies occur when a typhoon is close to the coast or landfall causes disturbances
in the ionosphere due to rapid loss of momentum and viscous interactions (27).

Table 1. Gravity wave periodicities estimated from thewavelet analysis of residual TEC data during 29 November – 02 December
2017.Residual TEC has been obtained by detrending the daily mean TEC variation fromoriginal TEC data for a particular day. We have

shown in braces the time whenlisted wave was the dominant component.

Date (2017)
GWs periodicity (in minute)
Tirunelveli Bangalore

28 November 239.5 (0648 UT), 119.7 (0520 UT),
181.5 (0316 UT), 294.8 (0025 UT),
169.3 (1124 UT)

239.5 (1212 UT), 119.7 (0908 UT),
181.5 (0435 UT), 294.8 (0745 UT),
169.3 (1710 UT)

29 November 363.0 (1005 UT), 181.5 (0030 UT),
128.3 (1114 UT), 84.67 (0552 UT),
90.75 (1433 UT), 294.8 (2038 UT)

363.0 (2329 UT), 181.5 (0658 UT),
128.3 (1527 UT), 84.67 (0932 UT),
90.75 (1955 UT), 294.8 (0443 UT*)

30 November 128.3 (1054 UT), 84.67 (1532 UT),
111.7 (1422 UT), 316.0 (0749 UT)

128.3 (1548 UT), 84.67 (2121 UT),
111.7 (2340 UT), 316.0 (1251 UT)

01 December 389.1 (0025 UT), 275.1 (1652 UT),
169.3 (1642 UT), 90.75 (0338 UT),
194.5 (2252 UT)

389.1 (0724 UT), 275.1 (2335 UT),
169.3 (2148 UT), 90.75 (1329 UT),
194.5 (0047 UT*)

02 December 294.8 (0625 UT), 97.26 (1120 UT) 294.8 (0724 UT), 97.26 (1626 UT)
*indicates the wave periodicity observed on next day

Fig 5.Wavelet spectra of TEC over Tirunelveli and IISC during 28 November – 2 December 2017
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4 Discussions
General diurnal behaviour of TEC over Tirunelveli and Bangalore clearly indicates the influence of TC Ockhi in the equatorial
ionosphere.When compared to control days, a decrease of TECby about 3 – 4TECUduring the development of cyclone is noted.
Time span of the observations are performed under quiet and low geomagnetic conditions yield favorable to investigate the
ionospheric perturbations of large scale tropospheric disturbances. It clearly reveals that TEC variation and foF2 are positively
correlated, which leads for some understanding of the ionospheric disturbances. Over the Indian low-latitudes, the F-region
electron density or TEC is often marked by an increase due to increase in geomagnetic activity (18,28–30). Over both Tirunelveli
and Bangalore that are low-latitude stations, TEC decrease during the presence of TC Ockhi suggests a strong impact of the
cyclone in the equatorial ionosphere. Several investigators have reported such a decrease in TEC during the tropical cyclone
occurrence (2,11).

Recently, the effect of Usagi cyclone on the TEC was reported during September 16-24, 2013, and noticed the ionosphere
disturbances through Spectral Whitening Method (SWM) along the track of tropical cyclone (28). Also, ionosphere could alter
its behavior while cyclone approaching the continent and our results show that TEC anomaly deviates below the normal day
on the landfall day is consistent with earlier report (18) noticed the deviation of 5 TECU before landfall and 3 TECU on the day
of landfall of a typhoon using network of 50 GPS stations. The ionosphere parameters like foF2, electron concentration, and
TEC decreases about a day after landfall of TC (11,31) and for some cases an increase in TEC observed (32). In addition, decrease
in foF2 marked during the onset of cyclone (12) while the same observed for the period of 2200 to 0300 in our study.

The anomalous TEC variation can be explained by several possible mechanisms. A sharp decrease of ionospheric TEC and
foF2 over a wide zone of the cyclone track could be explained by the mechanism which fluctuate the ionosphere during the
passage of a TC. TC is a strong hub of convective/lightning activity. Some studies suggest that lightning associated electric fields
can bring about a decrease in the electron density by enhancing electron attachment to O2

(33). Whereas for cyclone Phailin,
energy released during the lightning activity perturbs the ionospheric TEC over the Indian region (34). For cyclone Usagi, the
ionosphere-related parameters had anomalous electron density variation on the second day after landfall near Hong Kong (32).

Atmospheric waves act as a primary wave which propagates from low laying atmosphere to the thermosphere (35). Due to the
thunderstorms activity, modelling study reports the generated Acoustic Gravity Waves (AGW) which leads to the ionospheric
perturbation (31). Meteorological sources excite AGWs with periods close to the Väisälä-Brent period propagates from the
excitation region vertically and reach the heights of thermosphere and ionosphere.Thus leads to the formation of local heating in
the thermosphere region, due to the dissipation of waves, which affects the dynamics of the ionosphere region and its ionization
recombination processes (36).The E and F region of the ionosphere influence by the electrical effects of thunderstorms (37). Often
the tropical cyclone formation preceded by a convective burst of very deep andpersistent cumulonimbus clouds and the updrafts
of the convection can be extremely deep, wide, and intense. The convection generated stratospheric gravity waves due to the
mechanical oscillator mechanism are based on the response to buoyancy oscillation forcing at the tropopause (38). Also, the
similar wave periodicities observed due to convective sources in the MLT region (39). Furthermore, we found the meridional
phase velocity of the TC Ockhi induced GWs in the range of 21 – 36 m/s during 29 – 30 November which are consistent with
the thermospheric winds (40).

We present in Figure 6 the TRMM precipitation data (a proxy of convective activity) over the Indian subcontinent during
28 November – 02 December. Clearly the precipitation starts on 28 November around 80◦ E during low pressure and gets
intensified about 150mm/day during 29 November - 01 December 2017 when TCOckhi attains its peak near Tirunelveli. Later,
the precipitation rate increases and persists within 60 - 70◦ E during 02 - 03 December 2017 and shows that convective activity
moved away from Tirunelveli. The immense energy from the vortex formation of the tropical cyclone causes a convectional
effect on the distribution of the chemical constituents of the Earth’s atmosphere through the gravity waves which disturbed the
F region of ionosphere. During the active period of TC, the chemical constituents redistribute at different ionospheric heights
as well as the horizontal distances of the TC location. The TC generated energy from troposphere enhances the presence of
dominant neutral particles from lower part of the atmosphere. We postulate that the decrease in TEC and foF2 may be due to
the effect of TC-induced gravity wave, ejection of neutral particles from the terminator, and electric field generated by lightning
may redistribute the chemical constituents of the ionosphere by raising the number of neutral particles at different height region
in the track of the cyclone path.
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Fig 6. Longitude-latitude cross-section of rainfall rate derived from TRMM for the six days (28 November - 03 December 2017)

5 Conclusion
In this study, we presented TC Ockhi driven TEC anomalies and foF2 when the cyclone initiate and passes close to the station
Tirunelveli. Our results show anomalous TEC variation and foF2 caused by gravity waves through the coupling process between
the troposphere and ionosphere. When TC Ockhi was closer to these equatorial stations, significant changes in the equatorial
ionosphere were noted viz. a decrease in TEC and the signatures of TC-induced GWs in diurnal variations of TEC. Ionosonde
measurements of foF2 over Tirunelveli supported the decrease in TEC. Also, we have presented precipitation rate during intense
TCOckhi and it is noticed that the convective activity over the land region during the peak stage of TC. IntenseGWs activity was
noted over both stations when TC was closer to land during its development from deep depression to cyclonic storm. During
29 – 30 November when TC lay in the south of Tirunelveli, observed GWs had a phase speed of ~ 21 – 36 m/s and propagated
towards the north. However, continuous and comprehensive radar observations along with gravity wave ray-tracing algorithms
are necessary to confirm typical ionospheric observations as the result of tropospheric forcing.
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