Abstract:
The Mw 9.3 Sumatra earthquake of December 26, 2004 caused extensive coseismic displacements globally,
measurements of which were made essentially using modern geodetic techniques. This earthquake induced considerable perturbation in stress distribution as far as 8000 km away from the epicenteral region, which is tending to relax to its normal rates as seen from postseismic transient deformation. The monitoring of crustal displacements from strategically located sites using GPS provides coseismic as well as postseismic deformation that facilitates the understanding of the fault geometry, elastic thickness, postseismic relaxation mechanisms, rheology and earthquake recurrence time interval.We investigated coseismic and postseismic GPS derived displacements in Indian region together with the GPS data collected from Andaman and Sumatra region. It is found that while EW displacements are significantly large in peninsular India, those in the region to the north of Central India Tectonic Zone (CITZ) are relatively small. We could delineate the postseismic transients from position time series and interpreted them in terms of viscoelastic relaxation. It is inferred that the postseismic deformation is characterized by a power-law viscoelastic flow in the mantle. In Indian peninsula region, the timescale parameter of the exponential decay (s = 250 days) would require an extremely low viscosity for the upper mantle. Relying on the prevailing coseismic and postseismic displacement fields, the present study also reflects upon the contemporary litho-tectonics of the Indian sub-continent.